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ABSTRACT

Computer Aided Prototyping System (CAPS) is a programming

tool which uses PSDL (Prototype Systems Design Language) as a

specification language for large ADA program development.

The CAPS uses a syntax directed editor as a part of the user

interface for the system. This thesis focuses on the

specification and design of the syntax directed editor for

PSDL using the Cornell Synthesizer Generator to create a

language-based editor.
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I. INTRODUCTION

A. OVERVIEW

Prototype System Design Language (PSDL) is the essence of

the user interface in the Computer Aided Prototyping System

(CAPS). It provides the CAPS user with a method of

specifying very complex ideas simply and concisely. PSDL,

coupled with the CAPS system, allows the generation of

prototypes that are models of the final product as conceived

by the programmer and partial construction of the final

project. Early prototyping allows specification refinement

and shows the customer what the proposed system will do prior

to investing large amounts of money in deficient directions.

The benefits of this system of software development include

increased productivity, the ability to undertake larger

projects, improved reliability, better cost estimation,

reduced development costs, the ability to perform feasibility

studies.

B. DESCRIPTION OF SOFTWARE ENGINEERING PRINCIPLES AND FOURTH

GENERATION LANGUAGES

1. Software Engineering

Software engineering is the application of

engineering disciplines and mathematical principles to the

problem of creating software that efficiently and correctly

solves problems on computer hardware. Software consists of

1



the auxiliary packages required to perform specific

applications on hardware and includes programs, user guides,

documentation, validation, and any other special information

necessary to correctly operate them. One of the primary

goals of software engineering is to ascertain precisely what

the customer or end user wants and to be able to communicate

about that with him. This contributes to increased

efficiency which is itself another major goal of software

engineering, that is, the ability to turn out the correct

program at minimal cost both in terms of time and money. In

keeping with the reduction of costs, the introduction of

standard methodologies based on sound theoretical principles

increases consistency which also improves the reusability and

readability of the product. Another fundamental goal is

accuracy, the lack of which can lead to high costs in lives,

equipment, and money. [Ref. 1]

One of the fundamental keys to the advancement of

computer science and software engineering is the application

of abstraction. Abstraction is the reduction of a system to

only the details that are important for a particular purpose.

The result of abstraction is a reduction of the quantity of

details required to understand the system in question,

allowing the comprehension by humans of larger and more

sign 2icant projects. A goal in software engineering is to

increase the level of automation involved in the development

of software. In order to automate, the language used must be

2



precisely defined in terms of syntax and semantics. In the

CAPS system, two such languages have been chosen, PSDL and

Ada to partially automate the software engineering task.

2. Ada

Ada, a fourth generation language, was developed by

the United States Department of Defense (DoD) primarily to

standardize the programming language for military

applications. Of particular concern were embedded or mission

critical computer applications. Included in the

specifications for this language were readability,

documentation, simplicity, modularity supporting information

hiding, concurrency, and amenability to correctness

verification. The improvements in fourth generation

languages include the linguistic support for information

hiding and concurrent programming by providing an

encapsulation facility supporting the isolation of

specification and definition, information hiding, name

access by mutual consent and generic modules. [Ref. 21

3. Prototype System Design Language (PSDL)

Prototype System Design Language (PSDL) is a high

level prototyping language that can specify a program in

sufficient detail to be able to identify reusable software

from an on-line database and iteratively refine and further

define the prototype program. In the context of the Computer

Aided Prototyping System, the idea is that the designer and

the customer should be able to quickly determine the

3



specifications of the proposed system, after which the

Computer Aided Prototyping System searches for appropriate

reusable pieces of software from the software database.

PSDL's features include definition of real-time

timing constraints and the ability to design in a top-down

fashion by decomposing higher level entities into lower level

components. PSDL creates an executable prototype. The PSDL

computational model specifically deals with the interaction

between components and makes modularization easier to

implement. [Ref. 3]

C. SYNTAX DIRECTED EDITOR GENERATORS

Syntax directed editors are editors tailored to a

specific language. Using the grammar, format, and semantics

of a language, they assist in the writing of correct programs

by disallowing incorrect code and by prompting or inserting

correct program segments and legal alternatives. Since the

core of most editors is very similar, syntax directed editor

generators have been developed to capitalize on the

similarities and only require specification of language

specific details (see Figure 1). The predominant syntax

ernel (yta anuage Specific

( Ytx Seaics

Figure 1 Syntax Directed Editor Generator
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directed editors in use today are the Cornell Synthesizer

Generator and GANDALF.

1. Cornell Synthesizer Generator

The Cornell Synthesizer Generator creates interactive

tools to increase the programming power of programmers. The

Synthesizer Generator generates language-based editors using

the grammar of the language, its display format, and

transformation rules for restructuring programs. The

specification of the language's grammar is further subdivided

into the language's abstract syntax, context-sensitive

relationships, and concrete input syntax. Context-free or

context-sensitive errors are determined through knowledge of

a language's syntax to establish whether syntax errors have

been made locally or globally in order to notify the

programmer as soon as they are introduced. Language

semantics generate and update code during editing.

Incremental generation of code is used to maximize the

effectiveness of excess CPU time by evaluating derivation

tree segments during editing and to eliminate the need for

batch compilation in order to test and debug a program. The

Cornell Synthesizer Generator is illustrated in Figure 2.

[Ref. 2]

The syntax and semantics of a language provide the

relationships within the language which can be used to

assist the programmer in the correct usage of the language

and prohibit illegal constructs. It is also possible to
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Figure 2 Cornell Synthesizer Generator

relate two languages, say a programming language (Ada) and

its specification (PSDL) into a single tool, to implement a

particular methodology. [Ref. 4]

An editor created using the Synthesizer Generator

creates a program represented by a derivation tree, derived

with respect to the context-free grammar (see Figure 3). The

derivation tree branches under the direction of a structure

editor which supports the top-down construction of

hierarchical programs by the insertion of templates into

placeholders. The placeholders thetselves allow the insertion

of additional templates to progressively increase the detail

of the program being constructed. The structure editor

6



root

compnent P5l

operator component ... PM&

data type component .. Pwdl

Figure 3 Derivation Tree

supports operations called transformations which are menu-

selected legal insertions into a placeholder. Transformations

are operations which control changes in the sense that they

substitute one legal construct with another legal, although

usually more detailed, construct. [Ref. 4]

Templates support programming efficiency by

inserting only correctly formed, properly indented program

segments which are in the context of the program. Templates

match abstract computational units and can be inserted and

removed as program units thus promoting abstraction.

The Synthesizer Generator allows creation of hybrid

editors in the sense that both character and line oriented

operations can be incorporated with structural operations

such as template insertion. To allow the use of textual

insertions, syntactic categories are created which allow the

textual entry, accompanied by the concrete syntax necessary

7



to recognize the meaning of the input text. Text editing can

be limited to restricted constructs, the concrete input

syntax for textual input and template-insertion commands for

structural input can be context-dependent. [Ref. 4]

The program editors can translate the input into

executable code which is also maintained as it is modified.

Incremental translation, in addition to continuous

compilation, also lends itself to debugging since the

executable code can be moved incrementally allowing

evaluation only of small portions of reedited code. [Ref. 4]

Immediate computation is caused by incremental

algorithms. The Synthesizer Generator bases its algorithm

for incremental attribute updating on attribute grammars

[Refs. 5,6] and selective recomputation. Attribute grammars

are context-free grammars extended by attaching attributes to

the nonterminal symbols of a grammar and by supplying

attribute equations to define attribute values. Selective

recomputation causes only the values that are dependent on

changed data to be recomputed. The attribute grammar

formalism in the Synthesizer Generator uses declarative

specifications, a set of simultaneous equations whose

solution order is unspecified and whose data and variables

are closely interrelated, to define the immediate error-

analysis in its language based editors. Every object

created in an editor has a corresponding set of simultaneous

8



equations from which the editor can calculate the object's

error status. [Ref. 4]

In The Synthesizer Generator [Ref. 4], Reps and

Teitelbaum state:

Attribute grammars have several desirable qualities
as a notation for specifying language-based editors. A
language is specified in a modular fashion by an
attribute grammar: syntax is defined by a context-free
grammar; attribution is defined in an equally modular
fashion, because the arguments to each attribute equation
are local to one production. Propagation of attribute
values through the derivation tree is not specified
explicitly in an attribute grammar; rather, it is
implicitly defined by the equations of the grammar and
the form of the tree.

The benefit of using attribute grammars to handle the
problem of incremental change in language-based editors
is that the repropagation of consistent attribute values
after a modification to an object is implicit in the
formalism. Thus, there is no need for the notions of
"undoing a semantic action" or "reversing the side-
effects of a previous analysis," which would otherwise be
necessary. When an object is modified, consistent
relationships among the attributes can be reestablished
automatically by incrementally re-solving the system of
attribute equations. Consequently, when an editor is
specified with an attribute grammar, the method for
achieving a consistent state after an editing
modification is not part of the specification.

Apart from its use to specify name analysis and type
checking, the attribute-grammar formalism provides a
basis for specifying a large variety of other
computations on tree-structured data, including type
inference (as distinct from type checking), code
generation, proof checking, and text formatting
(including filling and justification, as well as equation
formatting). [Ref. 4]

The editor specification addresses both context-free

and context-sensitive conditions. As objects are created and

modified, the editor continually checks for compliance with

the specified context conditions. Context conditions are

expressed through the attribution of the object with

9



attribute equations that express certain constraints. When

an object is correctly or incorrectly represented, attributes

used in the unparsing specification cause the display to be

annotated with values of attribute instances indicating

satisfaction or violation of context-dependent constraints.

The editor responds to every editing change which affects the

user's feedback concerning the validity of his program. This

will also inform the user when he has corrected an existing

error or when he changes previously correct code to introduce

an error, which violates the constraints known to the editor.

[Ref. 4] The primitive phyla defined in SSL are defined in

Table 1.

TABLE I

PRIMITIVE PHYLA

BOOL Truth values

INT Integers

REAL Floating Point

CHAR Characters

STR Character strings

PTR References to SSL values

ATTR References to attributes

TABLE Hash tables

Source: [Ref. 7]

Editors are specified by the Synthesizer

Specification Language (SSL), a language based on an

10



attribute grammar and a type definition facility. In SSL, an

attribute's type can be an editor supplied built-in type

(primitive) or a user defined type constructed as a composite

of primitive types. Attribute types and abstract syntax are

both defined using the same sort of SSL rules. The result of

this double definition scheme is the creation of an abstract

syntax tree and attributes on that tree that are fully

compatible, that is, all the attributes are elements of a

single domain of values. This allows the writing of

attribution schemes which themselves create new syntactic

objects. [Ref. 41

2. GAmDALF

The GANDALF project not only provides a syntax

directed editor generator but it also supports a software

development environment. Software developrent environments

provide automated software support that allow simplification

of the software development process. Employment of several

programmers on a long-term joint project composed of many

modules may create problems significantly different from

common programming problems. Mechanisms requiring

cooperation between programmers are too personality dependent

to be adequate. In contrast, system development tools put

this support into software thereby enforcing cooperation

between programmers. [Ref. 8]

Project management, version control and incremental

programming are aspects of software development that are

11



integrated into a single environment in GANDALF. Through

semi-automatic generation, the GANDALF project is involved

with creating software development environments that combine

both programming and system development environments.

[Ref. 81

a. Project Management SDC (System Development
Control System)

Project management is derived from the idea that

the information representing the state of a developing

software project should be viewed as a set of abstract data

types upon which only certain operations may be applied. By

maintaining careful type and operation control, the software

under development is always in a well-defined state. The SDC

(System Development Control System) is a set of programs that

provides basic management and communication support within

the project team. SDC supports the project team with three

levels of program access: readers, project programmers, and

project leaders. [Ref. 8]

Generally, SDC commands pertain to multiple

source files in a project. The "reserve" and "deposit"

commands are the most commonly executed. The user "reserves"

a set of source files before making a modification. The

"reserve" command locks the selected file and prompts the

user to revise them. Actual file Modification is performed

using UNIX commands. Following revision, the user returns

the source files to the project. This "backs-up" the

previous version of the files, unlocks the new version of the

12



files, and prompts the user for comments reflecting the

modifications. The "release" command unlocks the files

without incorporating the modifications to the project if the

modifications do not satisfy the requirements. Eventually

every "reserve" command must be either "deposited " or

"released" (this permits rejection of code that does not

check out). [Ref. 8]

The system automatically maintains a log of all

modifications and prompts authors to explicitly document

anything noteworthy. The philosophy is that programmers

will document their programs if the process is made

su'ficiently easy. [Ref. 8]

b. System Version Control (SVCE)

Families of systems sharing subsystems with

different versions are interconnected (for example, the

source code, the object code, and the documentation) and

multiple versions of modules exist in a system. The SVCE

checks source files in and out of the system and manages the

three kinds of versions:

o parallel versions, which develop independently from a
common specification;

o successive versions, which develop by building or
evolving an existing module as bugs are corrected and
features are added;

o derived versions, which are different instances of a
system based on the same source code (optimized code is
one example of a derived version). [Ref. 8]

13



c. Incremental Programing LOIPE (Language Oriented

Incremental Programing Environment)

The goal of this project is to support

incremental compilation, linking, and loading for the

generated languages. Incremental compilation is performed at

the grain size of procedures rather than on larger

constructs. The extent to which recompilation can be limited

depends on the type of modification to the procedure.

Recompilation can be limited to the modified procedure when

only minor changes are made to local variables and to local

control flow. If a procedure's specifications change, then

that procedure and the procedures whose scoping depends on

it must also be recompiled. [Ref. 8]

Indirect procedure calls are used to call incremental

linking and loading routines. The incremental compiler for

LOlPE places an index into an entry vector in the object

code when a procedure call statement is encountered in a

procedure. The indexed entry value then provides the actual

location of the called procedure. When a procedure is

subsequently revised, the linker and loader update the entry

vector to hold the location of the new code. Subsequent

procedure calls will execute the new procedure instead of its

predecessor. [Ref. 8]

d. Syntax Directed Editing ALOE (A Language Oriented
Editor)

The basis for syntax directed editing comes from

the conception of a program as structure which is transformed

14



into text, which is then parsed back into structure. The

syntax directed editor relieves the user of the first

transformation of structure into text. This eliminates the

need for parsing, and in many cases, allows the users to

develop ALOE (A Language Oriented Editor) trees directly.

[Ref. 8]

These editors provide a good mechanism for

replacing the traditional (edit, compile, link, debug) cycle

with a more natural and friendly (edit, execute) cycle. ALOE

editors are specific instances of a syntax directed editor.

[Ref. 8]

All GANDALF ALOE editors share a tree-oriented

full-screen user interface. There is a set of language

independent commands, including tree traversal and cursor

motion commands available in all editors. Language specific

details include operators based on the language's grammar

which represent language specific structures. For example,

Pascal while statements are separately defined for each

language specific editor, as are the language specific static

semantic checks (type-checking for example). A set of

extended commands, may optionally be implemented to support

explicit invocation of actions, such as "execute program".

[Ref. 8]

The syntax, static semantics, and the set of

extended commands must be defined to construct an editor for

a particular language. The language, for implementation

15



purposes, consists of two major parts, syntax and semantics.

The syntactic definition of an ALOE editor is divided into

two parts: abstract syntax and concrete syntax. (See Figure

4) [Ref. 81

(Language Descripto

Syntax Semantics

Static Dynamic
semantics Semantic s 1

Tair AbsHntavt Sna

N odes t .des

Figure 4 A Language Oriented Editor' (ALOE)

The abstract syntax description defines the

underlying structures (trees in ALOE) of the language. The

abstract syntax is used to define a set of operators and a

set of classes. The operators represent node types that can

appear in the tree and the classes indicate the ways in

which these operators can be composed. Operators may be

considered as commands and classes as menus of operators, or

commands that may be legally selected. This two level

description mechanism permits the generation of a user

interface that limits modifications to those which guarantee

the syntactic consistency of language trees. The abstract

16



syntax grammar defines a set of abstract syntax trees that

represent all the legal syntactic programs derivable in the

specific language. [Ref. 8]

The concrete syntax details the transformation of

the abstract syntax to a textual representation suitable for

display to the user. The concrete syntax also defines the

syntactic sugar (generally redundant keywords) that has

traditionally been to support parsing of text to structure in

traditional compilers. [Ref. 8]

The semantic support, which includes checking of

static semantics and also the definition of extended commands

is available as follows:

o action routines, which are node (operator) specific
procedures that are called as a user makes changes to
a tree. The action routine for the operator is
called with the actual node and the type of the
action (for example, create or delete) as parameters
whenever a node of that type is created, deleted, or
modified. The calling of action routines is
automatic and invisible during program manipulation.

o extended commands which are explicit semantic actions
defined by procedures associated with the command
names. Extended commands include actions over which
the user desires complete control such as execution
of a program or reservation of a module. [Ref. 8]

e. The GANDALF Prototype

The goal of the GANDALF prototype was to

construct a software development environment based on ALOE

generated editors. The GANDALF prototype merges the ideas of

SDC, SVCE, and LOIPE into a single integrated environment

that produces a syntax directed interface to its users. The

functions provided include:
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o project management support, including reserve, deposit,
and log creation;

o system version control support, including parallel and
successive versions, and automatic system generation;

o programming support, including incremental compilation
and source-level debugging. [Ref. 8]

f. Designing the Environment

To design an environment, the environment

designer supplies the language syntax and semantics to the

environment generator. The environment generator then

combines the syntax and semantics with the GANDALF system

kernel to produce a new environment. [Ref. 9]

The kernel provides such facilities as the

command interpreter, editing commands, the user interface,

the window manager, and the display package. It is common to

all GANDALF editors. This relieves the environment designer

of redundant implementation details and provides a uniform

user interface in all environments. The kernel is applicable

to a broad range of environments. [Ref. 91

g. An Example of an ALOE

A GANDALF system ALOE (a language oriented

editor) is an editor designed for a specific language and is

programmed with information about the syntax and semantics of

the language. Naturally suited to the domain of programming

environments, a programming language editor can provide

syntactic and semantic assistance to the user. [Ref. 9]
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h. Generating an ALOE

A description of the target environment language

syntax, static semantics, and dynamic semantics must be input

to the ALOE generator which links the description with the

kernel to produce a new ALOE. The kernel supplies the

language-independent portion of the environment which is

common to all ALOE editors to be melded with the

language-dependent portion. [Ref. 9]

Syntax is input in abstract and concrete syntax

specifications. The abstract syntax defines the program

structure while the concrete syntax defines the physical

display of the program. The abstract syntax description is

defined in three sections: terminal nodes, nonterminal

nodes, and classes. An example illustrating these sections

defined in The Evolution of the GANDALF System is shown in

Figure 5. [Ref. 91

The rules defining terminal-nodes and nonterminal

nodes (productions) in the Pascal-like language are IDENT,

TYPEIDENT, INT and REAL. IDENT and TYPEIDENT are defined to

follow the lexical rules for a variable {variable}. Static

terminals INT and REAL depict a specific string value. Here

the curly braces "{" denote the lexical class and the angle

braces denote a list. The INT terminal refers to the Pd~dil

string "integer". The VARDECL nonterminal decomposes into

two children: an identifier "identlist" and a type "type".
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o Terminals:

IDENT = {variable}
TYPEIDENT = {variable}
INT = {staticl
REAL = {static}

o Nonterminals:

VARDECLS = <decl>
VAR DECL = identlist type;
IDENTLIST = <ident>

o Classes:

decl VAR DECL
ident = IDENT
identlist = IDENTLIST
type = TYPEIDENT REAL INT

Figure 5 Grammar for Pascal-like Variable Declarations

The children are specified by a class, "identlist" to

IDENTLIST and "type" to either TYPEIDENT, REAL, or INT. The

class represents a menu of possible nodes (sometimes a menu

of one) that could be inserted as the child of that

nonterminal, that is, for "type", there are three

alternatives. From the editor designer's perspective, a

class can be considered a type union with the nonterminals

describing the relationships between the various type unions.

The "type" class specifies that a "type" may be represented

by one of the following kinds of nodes: TYPEIDENT, REAL, uL

INT. The VARDECLS and IDENTLIST nonterminals represent

lists of elements where each element of the list comes from
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the same class. Terminals, nonterminals, and classes are

defined in Figure 6. [Ref. 9]

terminal - primitive symbol in a language

nonterminal - a symbol, which when applied to an input
symbol, points to a new production
(children are classes)

class - menu of possible nodes (terminals or
nonterminals)

Figure 6 Abstract Syntax Description

The next portion of the language specification is

the static semantics. Static semantics refer to the type of

semantics that can be checked by examination of the program.

It encompasses type checking, checking of scope rules (if

the language is statically scoped) and the like. Action

routines are written on selected nonterminal and terminal

productions in the grammar. [Ref. 9]

The final section of the language specification

is the dynamic semantics. The dynamic semantics provide the

tools necessary to execute a program. An incremental

compiler or an interpreter could be built-in to permit

program execution from any point in the program. Extended

commands are used to add dynamic semantics to an ALOE. An

extended command is a command written by the editor designer

which is added to the environment and appears as a kernel

command to the user. [Ref. 9]
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i. Programming Environments

GANDALF programming environments provide a highly

interactive knowledge-based environment for the programmer.

The intent of the system is support of small projects. The

knowledge programmed into the environments includes a minimum

of the syntax and static semantics of the programming

language. More advanced implementations of GANDALF

environments include dynamic semantics. A well designed

programming environment confirms the program's syntactic and

static semantic correctness and provides the ability to run a

partially constructed program at any time during the creation

of a program. [Ref. 9]

j. User Interface

The user interface is the component of any

environment which most significantly affects user acceptance.

The user interface is based on the kernel and therefore

provides a uniform presentation for all ALOE editors

regardless of the language. The kernel allows tailoring of

primitives according to the language specification, yet

maintains its style of user interaction. [Ref. 9]

3. Evaluation and Comparison of the Cornell Synthesizer
and GANDALF

The GANDALF tool provides an environment which allows

team development of a software project. It features both

programming and system development environments which exceed

the scope of the Cornell Synthesizer Generator which does not
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support system development environments. Since the editor in

CAPS is only a part of a system that has its own built-in

system development features, this feature is not relevant in

this application.

GANDALF and the Cornell Synthesizer Generator are

both based on derivation trees and differ primarily in the

way they deal with attributes. GANDALF has adopted the

Cornell Synthesizer's use of multiple trees to improve

modularity. The Cornell Synthesizer Generator uses

simultaneous equations to continually update the attribute

while GANDALF depends largely on static checking. Both

GANDALF and the Cornell Synthesizer Generator have the

ability to adjust the ratio of structural editing to textual

entry.

Due primarily to time constraints, the Cornell

Synthesizer Generator was chosen before any extensive

analysis of the GANDALF ALOE generator was performed. The

Pascal Editor included in the Cornell Synthesizer Generator

was tested and found to be an excellent editor.

Semantic checking is performed more naturally using

the Cornell Synthesizer Generator's attribute equations than

the writing of action routines to perform dynamic run-time

semantics. The Cornell Synthesizer Generator also has

capabilities for enhancing CAPS beyond the generation of a

capable syntax directed editor. The Synthesizer Generator
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also has the power to incorporate simple static timing

constraints and limited translation of PSDL directly into

Ada. Control Abstractions may also be checked using the

Synthesizer Generator.
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II. A DESCRIPTION OF THE PROTOTYPE SYSTEM DESIGN LANGUAGE
(PSDL)

A. PROTOTYPE SYSTEM DESIGN LANGUAGE (PSDL)

PSDL was designed specifically for the Computer Aided

Prototyping System (CAPS). Many features were considered in

the design of PSDL to meet both the requirements of a design

language and a prototyping language. Real-time constraints,

executability, and control aspects were incorporated to allow

the modeling of the actual performance of the system being

designed. To facilitate the use of the language, the

following features and requirements were designed into it:

o based on a simple computational model

o executable

o easy to use

o support of hierarchically structured prototypes

o support both specification and design

o data base accessible/addressable modules

o support for formal and informal module specification

o support of data

o function and control abstractions

o support of real-time systems.

PSDL specifies the characteristics and functions of

components in the prototype and reusable components in a

software data base. It is also used to establish the

connections between the various operators in a prototype.

[Refs. 3, 10]
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1. Model

PSDL is based on a graphical model consisting of

operators that communicate between themselves by means of

data streams which convey information using a fixed abstract

data type. Each operator corresponds to an Ada subprogram in

the final product. The computational model is an augmented

graph

G = (V,E, T(v), C(v))

where V is the set of vertices (operators), E is the set of

edges (data streams), T(v) is the timing constraint

associated with the operator at that vertex, and C(v)

represents the control constraints associated with the

vertex (see Figure 7). [Ref. 3]

T(v), C(v)

pe rato
input (vertex) T(v), C(v)

edge

perato -utu
T(v), C(v) r

perato I--eg

input (vertex)

Figure 7 PSDL Computational Model
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2. Operators

The operators fall into two categories, functions and

state machines. Operators have potentially several inputs

and outputs which are capable of delivering or transmitting

up to one data object at each operator firing. The output

values are determined by the inputs and the state of the

operator at the time of firing. The concept of an operator

supports top-down design in that operators support different

levels of abstraction, for example, one operator may

represent a collection of smaller operators or the same

operator may be decomposed into simpler (less abstract) or

simplest (atomic) representations. [Refs. 3, 10]

3. Comunicators

The data stream is the link by which two operators

communicate and pass data. Data values are transmitted

sequentially within data streams. The two types of data

streams, data flow streams and sampled streams, present data

to their respective operators. The data flow stream

guarantees delivery of the data sequentially in a FIFO queue

while the sampled stream presents only the most current data

value in its memory. The data flow stream is used when all

information is essential and the sampled stream is used when

it is likely that information may come in faster than a real-

time ability to process it. Stream types are not explicitly

declared but rather, are determined by the type of the

destination operator. [Refs. 3, 10]

27



Exceptions are built-in data types that recognize

whether data values are normal (do not belong to the

EXCEPTIONS data type) or are members of named EXCEPTIONS.

Exceptions are exceptional situations requiring a special

response and are values belonging to the EXCEPTION abstract

data type. Exception values are treated as normal values in

terms of their ability to be sent to other operators in data

streams. Exceptions can be produced in PSDL and Ada.

Exceptions produced in an Ada component which are not

handled internally are converted to PSDL exceptions and

transmitted to all the component's output streams, subject to

any output guards associated with that stream. [Refs. 3, 10]

4. Abstractions

Abstractions are fundamental in order to express

complex systems succinctly and simply. Abstraction is

specifically supported in the following areas: operators,

data, and controls. [Ref. 3]

The operator is an abstraction of either a function

or a state machine. The abstract operator is used to model

software systems as either an entity whose outputs are

determined solely by its inputs (a functional abstraction),

or determined by the combination of its inputs and its

internal state (a state machine abstraction). State Machine

abstractions are denoted by the keyword STATE. The operator

abstraction can be implemented by decomposition into smaller

composite operators or atomic operators. Operators are

28



composed of two primary parts, the SPECIFICATION and

IMPLEMENTATION. The SPECIFICATION includes the interface

parameters, timing characteristics, and the formal and

informal behavioral descriptions of the operator. These

attributes can be used to isolate a specific operator and can

be used as keys in a software database. The IMPLEMENTATION

specifies whether an operator is implemented in Ada (or other

underlying programming language for other systems), or

whether the operator is made up of composite parts. [Refs.

3, 101

Data abstractions contribute to the minimization of

coupling by separating the behavior of a data type from its

representation. The consequences of this data abstraction

are the ability to operate the prototype with incomplete

sources of data and also to allow totally different data

representations in the prototype and the actual system. Data

abstraction also allows the data interfaces to be described

independently of the representation of the data, so that the

interfaces for the operations on the data can be the same in

the prototype as in the intended system. This commonality

of the data interface is important in the validation of the

final system because it gives a basis to verify the

structures against the prototype. [Refs. 3, 101

Data types in PSDL are immutable (do not have

internal states). This prevents communication by way of side

effects. They include the built-in data types defined in
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Ada, abstract types defined by the user, and types

constructed using the PSDL data types. Like the operator, the

PSDL data type is defined using the components SPECIFICATION

and IMPLEMENTATION. [Refs. 3, 10]

Control abstractions are used to determine whether

operators can be run in parallel or must be run in sequence

and allow for the scheduling of the order of execution.

Naturally, within a composite operator there are also control

abstractions. Another feature of the control abstraction is

the provision for conditional execution using triggering

conditions and conditional outputs. The control abstraction

is regulated by control constraints, a non-algorithmic

mechanism that is specified to be PERIODIC or SPORADIC, has a

triggering condition, and has output guards. The periodic

and sporadic operators refer to the scheduling of an

operator, either within a specified period or when triggered

respectively. Triggers are data values specified to cause an

operator to fire. Every operator must have a data trigger or

a period and may have both. The combination of control

constraints also defines the stream types for the data

streams in the enhanced data flow diagram. The stream type

of a data flow stream is determined by the data trigger of

the operator to which it is an input, not the operator

originating the data flow stream. The data trigger ALL

specifies a data flow stream, and the data trigger SOME

specifies a sampled stream. [Refs. 3, 101
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5. Timing

Timing constraints express the essential timing

requirements necessary to operate within real-time

constraints. Modules can be specified with MAXIMUM

EXECUTION TIME, MAXIMUM RESPONSE TIME, and MINIMUM CALLING

PERIOD. The MAXIMUM EXECUTION TIME corresponds to the amount

of time that a module has to execute and may apply to any

PSDL operator. The MAXIMUM RESPONSE TIME corresponds to the

allowable time a sporadic operator has to output data from

the time it was triggered by the input data. The MINIMUM

CALLING PERIOD constrains the time interval between input

data streams. [Refs. 3, 10]

6. Hierarchy

Hierarchical structure is realized in the concept of

the composite operator. The constraints necessary to

decompose operators require clear communication via data

streams at the different hierarchical levels. The input

streams and the output streams into and out of a component

operator must naturally be accounted for in the parent

composite operator and every data stream going to or from a

composite operator must be a valid input or output associated

with at least one of the decomposed component operators.

Timing must also be constrained so that the execution and

response times of the component operators do not exceed the

MAXIMUM EXECUTION TIME or MAXIMUM RESPONSE TIME of the parent

composite operators. PSDL is designed so that the component
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operators downwardly inherit the period, minimum calling

period, and the stream types of the streams crossing the

boundary of the composite. The composite operators upwardly

inherit exceptions and integrate the output data streams.

[Refs. 3, 10]

B. ATTRIBUTE GRAMMARS

Attribute grammars allow both the syntax and semantics of

a language to be specified. Attribute grammars are context

free grammars which are extended by attaching attributes to

the grammar symbols. In the specification of a language,

attribute grammars allow top-down rules to be interspersed

with bottom-up rules. [Ref. 11]

An attribute grammar consists of a set of productions

that contains sets of semantic equations. Each semantic

equation defines one attribute to be the value of a semantic

function applied to other attributes in the production. The

semantic functions define values for the synthesized

attributes of the left-hand side nonterminals or the

inherited attributes of the right-hand side symbols. The

attributes of a symbol are divided into two disjoint sets:

o synthesized attributes which pass information up the
derivation tree

o inherited attributes which pass information down the
derivation tree. [Ref. 11]

A language symbol is represented by a derivation tree

node which defines a set of attribute instances. (See Figure

8.) Attribute instances correspond to the attributes of the
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syntactic category of the parent derivation tree node

(symbol). Since attribute values flow in both directions, it

is necessary to impose conditions to ensure that no attribute

instances are circularly defined. Syntax and semantics are

defined in modules using a context free grammar and the

semantics are defined based on the syntactic structure.

[Ref. 11]

C. OVERVIEW OF COMPUTER AIDED PROTOTYPING SYSTEM

The Computer Aided Prototyping System (CAPS) is a system

designed to cope with ever larger software systems.

Conceptually, it follows the needs presented by current

software shortcomings.

o It addresses the concept of communications between the
customer and the programming team

o It addresses the problem of the project scope exceeding
the capacity of a single person to comprehend the entire
project

o It incorporates reusability of software, it promotes
modularity, it recognizes real-time constraints

o It incorporates human factors into its design. [Ref. 12]

Essentially, the CAPS system allows the customer and the

project manager to express the needs of the system by

iteratively constructing refined prototypes that demonstrate

the appearance and simulate the performance of the end

product. After the design is approved, the prototype,

written in PSDL, is used to index a data base of reusable

software [Ref. 13] and applicable program segments are

substituted for equivalent PSDL operators. The remaining
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PSDL operators can be broken down into composite operators

using either the PSDL syntax directed editor or the graphics

editor. [Ref. 14] Decomposition of PSDL operators continues

until all the PSDL operators have been matched with

equivalent Ada code segments or until the operators are

atomic, at which point the operator is translated into Ada

manually. [Refs. 3, 12, 15]

Motivation for CAPS stems from a trend toward increased

software demand for larger and more complex systems. As the

scope of projects increases, there is an accompanying need

for improved productivity and reliability of software.

Successful communication between the customer and

programming organizations is necessary and is dependent on

requirements analyses and validation processes. This process

communicates the customer's needs and minimizes the number of

revisions necessary to develop the desired product. It also

validates feasibility studies, confirms viability, and

enhances cost estimation. [Ref. 1]

The CAPS method uses rapid prototyping to create an

executable model of the intended system. The model is built

by establishing a modularized skeleton, which validates the

timing constraints [Ref. 16] and systematically defines the

module interfaces (input, output formats), thereby

maintaining traceability to the project's requirements. This

model uses either a problem oriented top-down design to focus

on the critical sections of the problem or it may model the
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entire system. Once an executable prototype is built,

requirement refinement is verified with the customer and the

prototyping/refinement process is reiterated until the model

performs acceptably. [Refs. 3, 12]

The capabilities in the CAPS system include syntax

directed and graphical editing, reuse of software using a

PSDL keyed software base, code generation to interconnect

modules, static and dynamic task scheduling, debugging,

design control using a design data base and limited automatic

translation from PSDL into Ada. [Refs. 3, 12-18]

The rapid prototyping quickly produces a program skeleton

that is easy to understand, analyze and revise and in which

timing constraints are demonstrated in terms of whether

components will be able to perform their design functions in

the time allotted. [Refs. 3, 12]

D. BACKUS-MAUR FORM FOR PSDL

The Backus-Naur form for PSDL grammar is contained in

Appendix A.
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II. THEORY OF CORNELL SYNTHESIZER GENERATOR

A. TRANSLATOR AND KERNEL

The Synthesizer Generator is composed of two parts. The

first part is a translator that takes a Synthesizer

Specification Language (SSL) coding as input and produces

various tables as output. The second part is an editor

kernel that consists of an attributed-tree data-type and a

driver for interactively manipulating attributed trees. The

kernel takes input from the keyboard and mouse and executes

appropriate operations on the current tree. [Ref. 71

B. BUFFERS

The editor generated places objects into a collection of

named buffers. Normally, each edited file has a unique

buffer. The objects contained in buffers are called terms

and are derivation trees with respect to the abstract syntax

of the language. The nodes of a term are instances of

operators and the subtrees of a node are the operator's

arguments, themselves terms. Each term has a textual output

representation. [Refs. 4, 7]

Each buffer has a selection, the area of interest to be

edited. The selection can be chosen by tree walking

commands such as forward preorder, backward preorder, forward

sibling, backward sibling, and ascend to parent. [Refs. 4, 7]
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C. TRANSFORMATIONS

Each editing transaction replaces a subterm or sublist.

A transformation determines a replacement value for the

selected subterm as a function of its current value.

Transformations are enabled or disabled in accordance with

the matching of its pattern with that of the selection.

Enabled transformations are substitutions that can be made

for certain values, for example, <component> could be

replaced by the follQwing two alternatives:

"TYPE <identifier>
SPECIFICATION <identifier> : <type name>

OPERATOR <identifier>
SPECIFICATION

<attribute><requirements trace>
<functionality>

END
<functionality>

END
IMPLEMENTATION <type implementation>"

or

"OPERATOR" <identifier>
SPECIFICATION
<interface>

<functionality>
END

IMPLEMENTATION
<operator implementation>".

Transformations cannot introduce context-free syntax errors

since their definitions are also type-checked when the

Synthesizer Specification Language (SSL) specification is

compiled into an editor. During compilation, the grammar is

checked for consistency. [Ref. 11]
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D. EDITING

The Synthesizer Generator editors have a language

dependent part and a set of system commands which are

language independent and strictly control editor functions,

for example, cutting and pasting. To ensure connectivity of

the tree structure, the editor inserts placeholders to

replace any deleted subterms. [Ref. I]

The textual display of the selection can be edited like a

typical screen-oriented text editor. The text, initially is

placed into a text buffer upon the first action that implies

textual modification. The text buffer is then displayed on

the screen instead of the selection, causing its existence to

be practically invisible to the user. Within the text

buffer, editing is unrestricted. A character selection,

identifying the location that text changes occur, can be

positioned by moving the cursor or a mouse. When the term

selection is moved away from its current location, the text

is parsed with respect to the concrete input syntax of the

current selection context. If a syntax error is detected it

must be corrected before the contents of the text buffer can

be translated into a term, which in turn, replaces the

original subterm and is displayed according to its output

representation. The generated effect may be to format the

text on the screen or transform it into an equivalent

representation. [Ref. il]
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E. ATTRIBUTION

A term in a buffer is attributed, which means it has

associated with it computed values that characterize the

term. Every time a buffer is modified, the attributes are

revised so that they remain current and form a consistent

database of derived information. Selected attribute values

are displayed to the user as part of the output presentation

during the editing session. [Ref. 111

F. FILE REPRESENTATION

The buffer contents can be written into one of two types

of files: an abstract structure file which records the

abstract structure of the terms or a textual file which

records the textual output representation. Generation of a

text file is possible only if the concrete input s -tax is

complete. [Ref. 11]

G. PRACTICAL MATTERS CONCERNING IMPLEMENTATION

The novice editor designer is advised to consider the

costs in time and effort, and if determined to be justified,

to proceed in a modular fashion. The modules should reflect

the breakdown in SSL: abstract syntax, attribute

declarations, unparsing declarations, concrete input syntax,

and transformation declarations. Ultimately, to reduce end-

user frustration, the editor should be capable of receiving

as input both text entry and template insertion. [Ref. 41
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The order of editor module implementation should be

seriously considered in that some portions of editor

development are more intuitive than others. [Ref. 4]

Initially, it is essential to extract a manageable

subset of the language which represents the essence of the

language. In substance, this means drawing a line after a

portion of the grammar and either ignoring or selecting very

limited portions of the remainder of the language. In PSDL,

the first cut reduced the language to a definition of either

an operator or a data type as shown in Figure 9.

<psdl> ::= <component>
<component> ::= datatype

I operator
<datatype> "type" id typespec typeimpl
<operator> "operator" id operator_spec operator impl

Figure 9 Abbreviated PSDL in Backus-Naur Form

The Backus Naur form (BNF) of the grammar should be

translated into an abstract syntax. The original grammar may

not be defined specifically for translation into a syntax

directed editor and may contain extra syntactic categories

designed to reduce ambiguities to allow deterministic and

orderly parsing so that it may have to be restructured when

defining the abstract syntax. The edited object must be

hierarchically structured so that the abstract syntax tree is

understandable and reasonable from the editor user's point of

view. The naturalness of the decomposition of the edited
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object will determine the feel of the editor because the user

will be cutting and pasting subtrees formed under these

rules. [Ref. 4]

Over-specification or definition of unnecessary syntactic

distinctions will impede rapid programming by requiring the

user to split hairs to get the editor to accept a valid

input. Syntactic sugar is not needed in the definition of

the abstract syntax. Only terminals which contain semantic

meaning should be retained in the abstract syntax trees. The

operator in a production is sufficient to identify the

specific usage of the left-hand-side-phylum (the set of terms

derived from the given nonterminal symbol). Other keywords

or separators can usually be dropped from the abstract

syntax. [Ref. 4]

Since the abstract syntax tree is the only intermediate

storage medium for the editor objects, different textual

representations of the same object will be stored

identically, and will thus be represented as the same object

when retrieved from the abstract syntax tree. The

distinction between semantically identical objects can be,

but should not be retained. A standard form is the preferred

output of a generated editor; for example, the number 17

should be output whether the integer 0017 is entered or the

number 17. [Ref. 4]

Attribution may force a change in the abstract syntax

depending on the overloading in the grammar. For example, if
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an identifer may represent different types, then the semantic

analysis becomes context-dependent. [Ref. 4]

Initially, the unparsing declarations should be kept

simple, being intricate enough only to further debug the

generated editor. Consideration of alternate unparsiilg

schemes, optional line breaks, and context-dependent displays

should be postponed until the overall development of the

editor is in the later stages. It is advisable to indicate

the location of attribute values. Initially it is best to

specify every possible resting place (the node at which the

apex of a selection can rest) and weed out the undesirable

resting places later. [Ref. 4]

Transformations should be designed to permit top-down

derivation of an object. Initially, only transformations

that correspond directly with productions of the grammar

should be defined. These transformations are known as

template transformations because when one is invoked, it

generates a template into which additional components may be

inserted. [Ref. 4]

Templates are associated with productions of the form

X0 : operator (X1 ... Xn)

and correspond to the operator and the n terms. The form for

a template transformation corresponding to the above

production is:

transform X0
on transformation-name<X0 > : operator( <XI>, ... ,<Xn>);
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The placeholder <Xi> terms may be substituted with the

completing [Xi] terms, the distinction being that the

template reflects the placeholder when specified using the

"<>" brackets. Normally template transformations are not

necessary for list phyla and optional phyla due to built-in

transformations for them in the kernel portion of the editor.

Lexemes (keywords and punctuation) do not use template

transformations. Lexeme insertion is accomplished in the

concrete syntax. [Ref. 4]

At this point, it is recommended that an editor be

generated to verify, debug, and confirm choices made up to

this point. (Ref. 4]

Given satisfactory results at this stage, a minimal

concrete syntax should be defined to allow text input.

Initially, provision should be made for the entry of lexemes

and simple expressions. The parser can be elaborated later

and must be elaborated since the ability to read objects from

existing text files is necessary within the context of the

CAPS environment.
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IV. CONCEPTUAL DESIGN AND SOFTWMAE ENGINEERING OF A PSDL SYNTAX
DIRECTZD EDITOR

In the design of the syntax directed editor, a software

engineering approach was used to decompose the system into

manageable components. [Ref. 1]

A. REQUIRflNTS ANALYSIS

The purpose of the PSDL syntax directed editor is to ease

the programming burden of prototype development by providing

an editor with the following features:

o built-in grammar

o templates available for common constructs

o formats the input properly

o performs syntactic and semantic analysis.

The constraints on the editor include the use of a Sun

window based UNIX environment, use of the Cornell Synthesizer

Generator or GANDALF ALOE generator, and a limited amount of

time available due to the periodic rotation of students at

the Naval Postgraduate School.

1. Operating Environment

The syntax directed editor can run in either the UNIX

or Sun environment.

2. System Goals

Provide a Syntax Directed Editor for the front end

of a Computer Aided Prototyping System. Provide a user
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friendly Prototype System Design Language (PSDL) syntax

directed editor which gives the user a means of writing,

editing, and modifying syntactically correct Prototype System

Design Language (PSDL) code which includes limited semantic

checking.

3. Performance Constraints

The editor should never be unresponsive to the user

for greater than one-half second.

4. Implementation Constraints

The hardware decision is to use Sun work stations.

Future development may include porting to other systems

including PC's, but currently, various portions of Computer

Aided Prototyping System are written in different languages

thereby complicating portability.

The UNIX operating system is the unifying

environment common to all the subsystems within CAPS. The C

programming language is the basis for the Cornell Synthesizer

Generator software.

The PSDL language-based editor is to be implemented

using the Cornell Synthesizer Generator. The specification

for the language includes context-free abstract syntax,

context sensitive relationships, the display format, and

concrete input syntax. The Cornell Synthesizer GeneraLul

editor can be programmed to enforce the syntax and static

semantics of a particular language. The Synthesizer Generator

produces editors which form programs as consistently
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attributed derivation trees. As the program is edited, one

well-formed tree is changed into another well-formed tree.

As this transformation occurs, some of the attributes may

lose their consistency of values and in order to compensate,

incremental analysis is performed by updating attribute

values throughout the tree to correct for each modification.

If editing modifies an object to the point that

context-dependent constraints are violated, an error message

will be generated. [Ref. 7]

Editor specifications are written in SSL,

Synthesizer Specification Language, which is based on the

ideas of term algebra and an attribute grammar. [Ref. 7]

5. Resource Constraints

At the Naval Postgraduate School, availability of Sun

terminals which was once inadequate is now improving. The

primary resource constraints are time to dedicate to this

project and the turn around times incumbent in the Navy

Supply System.

6. External Interfaces

The editor is accessed from a UNIX environment by

invoking the editor name (psdl.syn) optionally followed by

the filename of new or existing PSDL (UNIX) files. The

editor has the capability to rename and create new files

while a file is loaded in the editor.
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B. FUNCTIONAL SPECIFICATIONS

The PSDL syntax directed editor can be classified as an

abstract state machine which interfaces with the CAPS system

only through the user interface (Ref. 15]. To ensure

compatibility with the Graphic Editor [Ref. 14], the syntax

directed editor will be implemented on the Sun work station.

The software package, either Cornell Program Synthesizer or

GANDALF, will determine the actual display.

The editor can receive input as UNIX files or direct

operator input; it notifies the user of incorrect syntax and

allows only correct Prototype System Design Language code to

be written prior to continuing the program. On demand, the

editor will prompt the user with legal syntactically correct

alternatives based on his location in the program. The

editor outputs UNIX files which represent the abstract

structure of the program or the textual format.

Other mechanisms in the CAPS system indirectly

communicate with the syntax directed editor via the user

interface.

The editor will support only one programmer in a PSDL

program at a time, although multiple programmers may edit

different programs simultaneously.

Program editing time will be considerably slower than

normal keyboard entry although actual time spent programming

non-trivial programs should be reduced due to reduced error

rates.
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The characteristics of the system are described in the

User Guide to the Prototyping Language Editor (Chapter V).

C. ACHITECTRAL DESIGN

The decomposition of the syntax directed editor is a

function of the software package used to generate the editor.

In both GANDALF and the Cornell Synthesizer Generator, there

is a major subdivision between the kernel which represents

the presentation and non-language specific details of the

editor, and the language-dependent portion which takes the

grammar of the language and the formatting instructions to

customize the editor to a particular language.

The Synthesizer Generator was chosen to implement the

PSDL editor; it is composed of two parts: a translator that

takes a Synthesizer Specification Language (SSL)

specification as input and produces various tables as output

and an editor kernel that consists of an attributed-tree

data-type and a driver for interactively manipulating

attributed trees. The kernel takes input from the keyboard

and mouse and executes appropriate operations on the current

tree. (Refs. 4, 7, 11]

Within the language-dependent context of the editor

generators, further modularization is effected by the further

subdivision into aspects of the language. The grammar is

fed into the Synthesizer Generator using Synthesizer

Specification Language (SSL) specifications. Synthesizer

Specification Language (SSL) specifies the root of the
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derivation tree, the abstract syntax, the attribution rules,

the unparsing rules, the template commands, the allowable

transformations, the lexical syntax, and the parsing syntax

to describe the various grammars, type dependencies, semantic

rules and embellishments (see Figure 10). [Refs. 4, 7, 11]

(Abstract Syntax,
(Attribute Declarations )

C~nparminw DealarationSD ~l y
Toncrete-Input- Syntax Declarations --

(ransformation Declarations

Figure 10 SSL Nodules in p5dl.syn

D. IMPLEMENTATION

The specification of an editor in SSL is a five part

process that includes: abstract syntax declarations,

attribute declarations and attribute equations, unparsing

declarations, concrete-input-syntax declarations, and

transformation declarations. The specification of abstract

syntax defines the basic structure of the language. The

attribute equations and attribute declarations are used to

track the context-sensitive relationships in the language.
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The unparsing declarations format the program output in terms

of output display. The concrete-input-syntax declarations

evaluate the textual input. The transformation declarations

provide legal program options for restructuring programs.

[Ref. 4]

SSL allows infix expressions, function applications,

conditional expressions, the construction of new terms, and

conditional pattern matching expressions (with expression).

Conditional pattern matching can be introduced using a base-

type declaration to define new value representation. The

base-type declaration references the name of a C type and six

operations on that type. The six base-type operations are:

comparison, conversion from ascii, conversion to ascii,

incrementation of a reference count, decrementation of a

reference count, and generation of a default base-type

value. These operations and the type definitions are written

in the C language. [Refs. 4, 7]

1. Abstract Syntax Specification

The specification of abstract syntax defines the

core of an editor. The abstract syntax is input as a set of

grammar rules that are used as the basis of the

representation of an edited object as a derivation tree

(syntax tree). Grammar rules are defined as productions in

the form

x0 : op(x I x2 ... xk);
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where op is the name of an operator and each of the xi is a

phylum, a nonterminal of the grammar. The PSDL construct:

psdl_impl: PsdlImpl(dataflowdiagram
optionalstreams
optionaltimers
optionalcontrol constraints
optionalinformaldesc)

represents the psdl_impl production where PsdlImpl is the

operator name and optionalstreams, optional timers,

optionalcontrolconstraints, and optionalinformaldesc are

nonterminals (phyla) in the grammar which are themselves

subsequently defined. The Backus Naur (BNF) representation

for this production is:

<psdl_impl> ::= dataflowdiagram
[ streams ]
[ timers
[ control constraints
[ informal desc ]
"end"

Each phylum represents a set of derivation trees derivable

from the nonterminal represented by the phylum. Each of

these derivation trees, in turn, are called terms. Terms

express the underlying meaning of a phylum but may be

displayed differently, transformed into a different display

presentation by the unparsing rules. [Ref. 4]

In the abstract syntax representation, the root

phylum initiates the derivation tree and all phyla derived

from it are defined in terms of it. The root phylum in PSDL,
*

from the BNF <psdl> ::= <component> is: root psdl. Each

subsequent phylum has a completing operator, which defines a
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default representation using completing terms in the absence

of more complete specification by the editor user. This

ensures that a derivation tree is always complete, regardless

of the state of composition, that is, the program has legal

defaults which stand until replaced by the editor user.

[Ref. 4]

The abstract syntax also allows the definition of

some phyla as lists. A list is a construct that allows one

or more objects to be entered, while an optional list allows

zero or more objects to be entered. The BNF representation

of the expression list:

<expression-list> ::= expression <"," expression>

is translated into the following partial SSL representation.

list expressionlist;
expression list : ExprListNil()

ExprListPair(expression expression-list)

The comma in the BNF notation will be defined in the

unparsing declarations in another section or module. An

optional list construct in PSDL, for example the root phylum

<psdl> ::= <component> , translated into SSL is:
optional list psdl;
psdl : PsdlNil() /* This is a completing term */

IPsdlPair(component psdl). [Ref. 4]

The editor treatment of lists includes special

built-in routines for manipulating lists including the

forward-with-optionals command. Lists must be defined as a

nullary operator and a right recursive binary operator.

Lists have a default representation based on the completing
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term. The completing term of a list phylum is the singleton

list constructed by applying the binary operator, in this

case PsdlPair, to the completing term of its left argument

phylum and to the list's nullary operator, psdl. The

completing terms are artificially added by the editor to

satisfy the attribute tree until substitution by a legal PSDL

phylum declaration. [Ref. 4]

The first operator declared for a phylum, such as

the operator DaTyComp of phylum component and the operator

DaTy of the phylum datatype, is called the completing

operator and is used to construct a default representative

for the phylum, called the completing term. The abstract

syntax representing the abbreviated grammar is shown in

Figure 11. A more complete approximation of the abstract

syntax for PSDL is contained in Appendix B.

2. Attributes and Attribute Equations

After the grammar rules are implemented to define

the abstract syntax, attribute equations are added to define

the static inferences about the objects being edited. The

static inference conditions checked are whether a declaration

is supplied for identifiers, if an identifier is multiply

declared, and if the constituent of expressions are type-

compatible. During program editing, these conditions are

incrementally checked. Comments, defined as attributes, are

used to report violations of these. When an error is

present,
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root psdl; /* tree root */

optional list psdl;
psdl : PsdlNil() /* This is a completing term */

IPsdlPair(component psdl);
/* allows recursive addition of components
within the program */

component: EmptyComp() /* required as a completing
term */

I DaTyComp(data_type) /* function calls */
I OpTyComp(operator);

data_type: DaTy(identifier identifier identifier);
operator: Op(identifier identifier identifier);

/* notice that the keyword "operator" will
have to be inserted in the actual text of

the output program */

identifier: IdentifierNull()
I Identifer(IDENTIFIER);

Figure 11 Abstract Syntax for Abbreviated PSDL Grammar

it satisfies the attribute value corresponding to an error

message, similarly, when no error is present the

corresponding attribute value is the null string. Since the

conditions are incrementally checked, correction of a

condition triggering an error attribute will clear the

offending error message. [Ref. 4]

The definition of an attribute can be done in

different ways: rules defining attributes, rules defining

error attributes, and function declarations. [Ref. 4]

An attribute may be declared at the root to define

the root environment. This attribute should contain the type

bindings of each declared identifier. Subsequent expressions
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and subexpressions would the also have an associated type

attribute. Typing of every identifier is determined by

accessing the root environment while the typing of other

expressions is determined by it's associated type attribute.

The root environment is propagated from node to node

(synthesized) in the tree and local attributes may be defined

to allow definition of a computation in one production of a

phylum without requiring the computation in all the phyla.

[Ref. 4]

An attribute declaration specifies the phylum name,

attribute type, and nature of the attribute (synthesized or

inherited) for every attribute associated with a phylum. The

type of an attribute can be either a predefined phyla or a

user defined phylum. Local attributes associate with

individual productions instead of with every production of a

phylum. Attribute equations associated with each production

define the individual attribute values and define how an

attribute-definition function is applied to other attribute

occurrences of the production to define an attribute

occurrence. [Ref. 4]

Upward remote attribute sets are a short cut for

repeated inherited attribute definitions and equations. They

allow the passing down of values from first corresponding

operator up the path of the derivation tree of an expression.

The alternative to upward remote attributes sets is to attach
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appropriate attributes to each phylum and to write attribute

equations to pass the value down the term. [Ref. 4]

A syntactic reference is the use of a part of the

term being edited in an attribute definition function. An

attribute's type is a phylum that is defined with the same

set of rules that are used to define syntactic objects; a

program's attribute values and the program itself are all

elements of either primitive phyla or phyla defined in the

editor specification. Local attribute declarations improve

efficiency by allowing the definition of a computation in one

production of a phylum without requiring the computation in

all the productions. [Ref. 4]

All the error attributes are declared as having type

STR, a built-in string phylum of strings. The associated

attribute is the null string for no error and the appropriate

error message in the case of an error. Each error attribute

is defined conditionally, the conditions are checked and the

value of the conditional expression is determined by the

selected branch of the conditional expression. [Ref. 4]

3. Unparsing Declarations

Unparsing declarations define the display format of

a term, which nodes of the abstract syntax tree are

selectable, and which productions are editable as text. An

unparsing declaration defines the format of a production in

terms of strings, sequences of strings, selection symbols,

and names of attribute occurrences.
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Unparsing rules have two basic forms:

phylum : operator [left-side : right-side];

phylum : operator [left-side ::= right-side];

The colon indicates that the production should be treated as

an indivisible unit and the : := symbol indicates that text

entry is permissible for that production. Different

operators of a given phylum may use different symbols. The

unparsing declarations for the abbreviated PSDL grammar are

shown in Figure 12.

The display of the program on the screen is

configured by the following embedded symbols,%t, %b, and %n,

designating tabs, reverse tabs, and line feeds respectively.

Tab stops are used for lining up items in selective

indentation. The tab setting may be changed using the set-

parameters command and has a default setting of two.

psdl : PsdlNil @ :]
I PsdlPair [@ : A[I

t %n' ' ]@]

component :EmptyComp [@ : "<component>"]
IDaTyComp [" : @"<data type>"]
lOpTyComp [^ : @"<operator>"]

data_type :DaTy [@: "TYPE" @ @ @ "%n"I

operator :Op [@: "OPERATOR" @ @ @

Figure 12 Grammar Rules Defining Display
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Selection symbols @ or ^ designate locations of one of the

phylum occurrences in the productions mix-fix

representation. The selectability property for a given node

in the tree is defined by the selection symbol. The

selection symbols define whether a phylum occurrence is a

resting place or not. The @ designates a resting place where

either of the two corresponding phylum occurrences is

specified to be a resting place. The A designates a non-

resting place, a node where both phylum occurrences are

specified as non-resting places. Selections are allowed only

at resting places which are determined by the selection

symbols of the unparsing declarations. In a generated

editor, the cursor is moved to the closest resting place

associated with the selected item. The selection symbol @

designates a phylum as a resting place while a A does not. A

syntax tree node is comprised of left hand side and right

hand side phylum occurrences. If either occurrence is

specified with an @, then that node is a resting place.

[Ref. 4]

4. Concrete Input Syntax

The primary purpose of concrete syntax is that it

allows the terms to be entered as text in addition to

structure editing as data entry methods. Text entry allows

temporary freedom of expression until it is parsed, at which

point the string is parsed and translated into an abstract

syntax term. [Ref. 4]
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The specification of concrete input syntax uses

attribute equations which synthesize the terms as attributes

of a parse tree in conjunction with concrete input grammar

productions to translate text into abstract syntax terms.

Every phylum in the abstract syntax that is expressible as

text must have a corresponding input syntax phylum. Entry

declarations have the forms exhibited in Figure 13.

Psdl {synthesized psdl t; );
Component {synthesized component t; 1;
Data_type {synthesized data_type t; };
Operator {synthesized operator t; 1;
Ident {synthesized identifier t; };
psdl ~ Psdl.t;
component ~ Component.t;
data_type ~ Data_type.t;
operator ~ Operator.t;
identifier ~ Ident.t;

Figure 13 Association Between Abstract and Input Syntax

The correspondence between the selections within the

abstract-syntax tree and entry points within the input syntax

is defined using entry declarations in the form:

p ~ P.t;

where the component under the cursor is checked to see if it

is a member of p and if it is, its input is parsed to verify

that it is a member of phylum P. Following confirmation, the

attribute t updates the current selection and the parse tree

is abandoned. [Ref. 4]
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Lexical phyla, multi-character tokens and keywords,

should be defined with individual rules similar to those

shown in Figure 14.

TYPE: TypeLex< "type"I"TYPE" >;
OPERATOR: OperatorLex<"operator" "OPERATOR">;
SPECIFICATION: SpecLex<"specification"ISPECIFICATION" >
IDENTIFIER: IdentifierLex< [a-zA-Z][a-zA-Z0-9_\$]* >;
INTEGER: IntegerLex< [0-9]+ >;
REALNUMERAL: RealLex<[0-9]+(\. [0-91+)?

([eE] [-+]?[0-9]+) ? >;
CHARACTER: CharacterLex< '.'I'''' >;
STRING: StringLex< '(('') I [^']) (('')I [^'])+ ' >;
WHITESPACE: Whitespace<[\ \T\N] >;

Figure 14 Translation of Input Syntax into Abstract Syntax

The lexical declarations declare that strings

generated by the regular-expressions are in a given phylum.

The regular-expressions are enclosed in angle brackets and

follow the lex conventions as listed in Figure 15.

c the character "c"
"1CLC2C3" the string "CLc 2c3"
\c a "c"

[Clc 2c?] the character cl or c2 or c
[ci-c 2 ] any of the characters between cI and c2
[^clc 2c 3 l any character but cl or c2 or c3

any character but newline
^Ie an e at the beginning of a line
e$ an e at the end of a line
e? an optional e
e* 0, 1, 2, ... instances of e
e+ 1, 2, 3, ... instances of e
ele 2  an el followed by an e2
elle 2  an el or an e2(e) an ee /e2  an e, but only if followed by e2

e~nln 2 } nI through n2 occurrences of e.

Figure 15 Regular Expression Notation
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The rules for TYPE, OPERATOR, SPECIFICATION and END

are examples which define the lexical phyla. The WHITESPACE

token identifies blanks and designates them as something to

be ignored during parsing. Figure 16 defines the syntax of

the concrete input language.

Psdl (Component) {Psdl.t = (Component.t :: PsdlNil);
I ( Component Psdl) {Psdl$1.t = (Component.t
PsdlNil$2.t);} ;

Component ::=(Datatype){Component.t = DaTyComp(Data_type);}
I (Operator) {Component.t = DaTyComp(OPerator);} ;

Datatype ::= (Ident Ident Ident) { D a t a _ t y p e . t =
DaTy(Ident$l.t, Ident$2.t, Ident$3.t); };

Operator ::= (Ident Ident Ident) {Operator.t =
Op(Ident$1.t, Ident$2.t, Ident$3.t); };

Ident ::= (IDENTIFIER) {Ident.t = Identifier(IDENTIFIER); };

Figure 16 Syntax of Concrete Input

The parsing declarations define concrete input syntax and are

recognizable by their use of ::= to separate the phylum name

from the symbols on the right hand side of the declaration.

The ability to translate input text into an abstract-syntax

tree permits the editor designer to define structural and

textual interfaces to the extent desired. [Ref. 4]

5. Transformations and Templates

The ability to transform an object when its

structure matches a certain pattern or insert a construct

where it is permitted is dictated by transformation

declarations. Templates can be inserted for a given

placeholder. [Ref. 4]
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The form of the transformation declaration is:

transform phylum
on transformation-name pattern : expression;

and its use in the PSDL editor is as follows:

transform component
on "data type" <component>:DaTyComp(<data_type>) ,
on "operator" <component>: OpTyComp(<operator>) ;

The transformation is enabled if the current selection

matches the named phylum, in this example the phylum

"component". The outcome of the transformation is the

replacement of "component" with the value of the expression

on the right of the "':" with the selected expression for the

data type or the operator. (Ref. 4]

E. EVOLUTION

The evolution of the PSDL syntax directed editor

initially should entail the continuation of this process,

that is, the refinement of the constructs of the language to

encompass the complete description of the language and the

semantics within the language. PSDL type-checking,

inheritance constraints, and stream-type calculations should

be checked for consistency and inheritance by the assignment

of attribute equations. As CAPS evolves and further

refinements to the language occur, the language naturally

will need to be upgraded, and the Cornell Synthesizer

Generator may be applied to other aspects of the CAPS system

including debugging, scheduling, and translation.
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V. USER GUIDE TO THE PROTOTYPING LANGUAGE EDITOR

A. GENERIC FEATURES OF THE EDITOR

The top line of the screen (see Figure 17) has a

highlighted title bar displaying the name of the current

buffer. The remainder of the screen is divided into three

regions: the command line, the object pane, and the help

pane. [Ref. 41

Title Bar

Command Line

Object Pane

Help Pane

Figure 17 Editing Session Screen

The command line echoes commands and displays system

messages, the object pane displays the buffer's program

segment, and the help pane shows which constituent is

selected. [Ref. 4]
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The editor is a screen-oriented hybrid editor. The

program being edited is an object which has a hierarchical

structure. The object being edited is built through the use

of templates, placeholders, and text. Templates are

formatted patterns of keywords and placeholders.

Placeholders identify legal locations where new components

can be added. Text editing is performed at the character

selection, denoted by the I-beam symbol within the

highlighted section. Both the structural selection and the

character selector are keyboard or mouse controlled. Using

the mouse, the arrow selector is first positioned, then it is

selected using the left mouse button. Text editing is not

permitted in all constructs and the editor will display an

error message if attempts are made to insert text in other

than character selection text buffers. Text input is checked

by the parser after entry for syntactic correctness before

being accepted as a valid program input. Before proceeding

with the program, erroneous text must be either corrected or

deleted. [Ref. 41

The Prototyping Language Editor places objects into a

collection of named buffers. Normally, each edited file has a

unique buffer. The objects contained in buffers are called

terms which are derivation trees with respect to the abstract

syntax of the language. The nodes of a term are instances of

opezuors aiu rne subtrees of a node are the operator's
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arguments, themselves terms. Each term has a textual output

representation. [Ref. 4]

Each buffer has a selection, the area of interest to be

edited. The selection can be chosen by tree walking commands

such as forward-preorder, backward-preorder, forward-sibling,

backward-sibling, and ascend-to-parent. [Ref. 4]

The objects edited are stored in named buffers. A file

being edited normally is placed in its own buffer. That

buffer remains bound to the file until the buffer is exited

or a different file is explicitly read into that buffer.

[Ref. 4]

Every buffer has a syntactic mode which is declared in

the root phylum. This mode is automatically maintained by

the editor and the value of the buffer remains syntactically

well formed. [Ref. 7]

A buffer of a syntactic mode always has a completing term

corresponding to its phylum. During editing, a buffer

generally contains a term with several placeholders. As

editing proceeds, the buffer is updated by replacing

constituent subterms in any order. Placeholders are replaced

by terms created by text entry, transformation, template

insertion, or cutting and pasting. [Ref. 7]

The mouse can be used to point anywhere on the object

pane, and click to a new selection. The mouse can be used in

conjunction with the select-start/select-stop commands to

drag between characters in a given production. [Ref. 10]
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The mouse also actuates menus for the various commands

as shown in Figure 18. (Ref. 7]

000
Mouse
Commands

Edit Cursor Windows File Search

Figure 18 Mouse Commands

The middle button activates a menu with the following

commands: edit, cursor, windows, file, and search. [Ref. 10]

Each editing transaction replaces a subterm or sublist.

A transformation determines a replacement value for the

selected subterm as a function of its current value.

Transformations are enabled or disabled in accordance with

the matching of its pattern with that of the selection.

Enabled transformations are substitutions that can be made

for certain values, for example, <component> could be

replaced by '<data_type>'' or "<operator>".

Transformations cannot introduce context-free syntax errors

since their definitions are also type-checked when the

Synthesizer Specification Language (SSL) specification is

compiled into an editor. [Ref. 4]

The Synthesizer Generator editors have a language

dependent part and a set of system commands which are
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language independent and strictly control editor functions,

for example cutting and pasting. To ensure connectivity of

the tree structure, the editor inserts placeholders to

replace any deleted subterms. [Ref. 4]

The textual display of the selection can be edited like a

typical screen-oriented text editor. The text, initially is

placed into a text buffer upon the first action that implies

textual modification. The text buffer is then displayed on

the screen instead of the selection, causing its existence to

be practically invisible to the user. Within the text

buffer, editing is unrestricted. A character selection,

identifying the location that text changes occur, can be

positioned by moving the cursor or the mouse. When the term

selection is moved away from its current location, the text

is parsed with respect to the concrete input syntax of the

current selection context. If a syntax error is detected it

must be corrected before the contents of the text buffer can

be translated into a term, which in turn, replaces the

original subterm and is displayed according to its output

representation. The generated effect may be to format the

text on the screen or transform it into an equivalent

representation. [Ref. 4]

A term in a buffer is attributed, which means it has

associated with it computed values that characterize the

term. Every time a buffer is modified, the attributes are

revised so that they remain current and form a consistent
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database of derived information. Selected attribute values

are displayed to the user as part of the output presentation

during the editing session. (Ref. 4]

The buffer contents can be written into one of two types

of files, an abstract structure file which records the

abstract structure of the terms, or a textual file which

records the textual output representation. Generation of a

text file is possible only if the concrete input syntax is

complete. [Ref. 4]

B. LANGUAGE SPECIFIC FEATURES OF THE EDITOR

This implementation of a PSDL editor is rudimentary in

that it is so abbreviated as to be ineffectual for the PSDL

programmer, but it demonstrates the feasibility of the

Synthesizer Generator for follow-on work. The current

version of the editor limits the PSDL to components which may

be expressed only as operators and data types. The language

specific details of the editor are contained in file psdl.ssl

which are listed in Appendix C. The remainder of this guide

assumes a fully implemented editor.

C. USING THE EDITOR

The Prototyping Language editor is invoked by typing

psdl.syn with or without parameters. The parameter list

specifies a collection of named files to be loaded into

editor buffers.
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The command to exit the PSDL editor is ^C or the exit

command found in the file menu using the mouse. Commands can

be invoked by direct keyboard entry, or selected from a menu.

Keys that are not bound to editor commands show up as text on

the object being edited.

The Prototyping Language Editor applies knowledge of

PSDL's context-free syntax to assure that programs are always

syntactically well formed. The PSDL code is represented

within the editor by a derivation tree with respect to the

underlying context-free PSDL grammar. The program is

modified by two mechanisms: structural editing and textual

editing. [Ref. 4]

1. Structural Editing

Structural editing treats the program as a hierarchy

of computational modules. Programs are created in a top-down

manner using predefined formatted language constructs known

as templates. An example of a template is the interface

construct:

<attribute>

BY REQUIREMENTS <identifier>

where <attribute> and <identifier> are placeholders that show

where additional program definition and refinement may be

entered. Programs are developed by inserting new templates

into placeholders of entered templates, for example, any of

the following templates could be inserted into attribute:

INPUT <typedecl>, OUTPUT <type_decl>, STATES <type_decl>
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INITIALLY <expression>, EXCEPTIONS <id list>, or MAXIMUM

EXECUTION TIME <time>. Placeholders in templates prompt the

user for legal insertions and enforce the syntactic

constraints. [Ref. 4]

The cursor points to the current selection, the point

where insertion and deletion may be performed. The selection

can be moved from one template to another and from one

template to its component parts. [Ref. 4]

Legal templates may be inserted into a program and

textual entries may be added after the editor verifies the

legality of the insertion. For example, if the selection is

<attribute>, a menu command to insert a state attribute into

the program would result in the following properly indented

program fragment:

STATES <typedecl>

INITIALLY <expression>

BY REQUIREMENTS <identifier>;

notice that by the recursive nature of the language, further

definition can continue indefinitely. The menu of insertion

commands does not provide the same choices in all contexts,

it is limited to the legal choices for that point in the

program. In The Synthesizer Generator [Ref. 4] Reps and

Teitelbaum state:

Templates eliminate mundane tasks of program
development and let the programmer focus on the
intellectually challenging aspects of programming. Each
template insertion is syntactically correct because
template commands are valid only in appropriate
contexts. Indentation is automatic: both when a
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template is introduced and when it is moved.
Typographical errors in structural units are impossible;
the templates are predefined and immutable, so after a
template has been inserted, errors cannot be introduced
by subsequently modifying it. Thus, a program developed
with a structure editor is always well formed, regardless
of whether it is complete.

Templates correspond to abstract computational units.
Because they are inserted and manipulated as units, the
process of programming begins and continues at a high
level of abstraction. [Ref. 4]

Transformation operations allow the replacement of

one piece of code with another within legal constraints. An

example of a transformation could be the transformation of

time units into a standardized unit say ms, so that .001 sec

would be transformed into 1 ms. [Ref. 4]

2. Textual Editing

The Prototyping Language Editor is a hybrid editor

which combines the advantages of a structure editor with text

editing capabilities. Syntactically incorrect programs are

prevented by validation of the code (parsi- of text) before

incorporating into the structured derivation tree. [Ref. 4]

The textual component of the Prototyping Language

Editor allows the composition of code as text, and the

editing of existing code as text. [Ref. 4]

3. Demonstration of Prototyping Language Editor

This demonstration illustrates pretty printing, list

manipulation and text editing. Initially, the screen

appears with the following information in the ind cated

-egions. The title bar at the top line of the screen

displays the name of the current buffer. The remainder of
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the screen is divided into the three regions shown in Figure

17. The command line echoes commands and lists system

messages, currently blank. The help pane provides

information about the current selection and its allowable

transformations, in this case:

Positioned at component datatype operator.

The object pane displays part of the program being edited,

<component>. [Ref. 4]

Invoking a transformation in the editor lists the

initial choices of datatype or operator. Selecting the data

type displays the following in the object pane:

TYPE <identifier>

<type specification>

<type implementation>.

Likewise, selecting the operator displays the following

template:

OPERATOR <identifier>

<operator specification>

<operator implementation>. [Ref. 4]

Since the editor is a hybrid editor supporting both

structure editing and textual entry, the method of

delineating which form of editing must be distinguishable.

In structure editing, the structural selection is marked by

the highlighting of the applicable template or placeholder,

while an I beam is used as a character selector in text

editable portions. The structural selection and the
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character selection can be positioned on the screen using the

mouse or the positioning commands:

ESC-p for cursor up

ESC-d for cursor down

ESC-b for cursor left

ESC-f for cursor right.

The select command is bound to ESC-@. A complete set of

editor commands is contained in Appendix F. [Ref. 4]

Placeholders can be manipulated directly as text or

by template insertion. Available templates are listed in the

help pane and are addressable by clicking on the name in the

help pane, through the mouse driven pop-up menus, and by the

keyboard using the execute-command (Tab (^I) or ESC-x). To

illustrate this, consider the interface template in the

object pane:

<attribute> <reqtstrace>

when the cursor is positioned over the <attribute> the help

pane displays the following:

Positioned at attribute genericparam input output states
exceptions timing_info

informing the user that the templates available for insertion

are only those listed. Likewise the transformation pop-up

menu would exhibit the same information in a different format

or the selection could be typed in using the execute-

command. When a template is selected, say input, the command

line echoes: COMMAND: input. [Ref. 4]
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Template commands can be terminated by moving the

buffer selection. One of the most natural of these commands

is the return (AM) which causes the selection to move to the

next resting place (actually a preorder traversal of the

derivation tree). [Ref. 4]

When the placeholder represents a list or an optional

list, a forward-with-optionals command (return (AM)), moves

the selection to the next element in the list. To terminate

the list, another forward-with-optionals command (return

(AM)) will advance to the next template or placeholder. An

example of a list is an identifier list:

dog, cat, whale, wombat, <id list>. [Ref. 4]

A template may have more than one placeholder, for

example type decl, where there is a left-hand-side id list

and a right-hand-side typename. When a template is

inserted, a forwardwith_optionals command is invoked causing

the selection to move to the first placeholder, id list.

After the id list is inserted, two returns (forward with

_optionals, (AM)) cause the text to be parsed and if

syntactically correct, the selection moves to the right-hand

side of the type declaration, type-name. [Ref. 4]

Some selections are editable as text in which case

the selection is captured into a text buffer. The text

buffer is located at the selection and is not distinguishable

as a text buffer until a character is entered at which point

the character cursor appears, represented as an I beam.
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While the text is being edited, the selection exists as text,

not as structure and operations within the selection are

defined only on characters, not on program structures.

Termination of text entry into the text buffer is signalled

by a return (^M forward-with-optionals). Since the user

types in the text buffer, it is possible to contain errors.

To prevent the introduction of errors into the program, a

parser checks the buffer and if a syntax error exists, sounds

a warning signal, displays an error message on the command

line, and positions the cursor at the end of the word

containing the first error. Following the detection of an

error, text editing may be resumed to correct the error. To

erase the selection, the delete-section (^K) can be invoked

and the selection re-entered. After the correction, return

(forward-with-optionals) causes the text to be parsed again.

(Ref. 4]

Syntactic correctness allows the parsing, but does

not guarantee that the editor will accept the input without

complaint; a comment revealing failure to comply with data

types or control constraints will be generated if the

attributes are not satisfied. [Ref. 4]

This concludes a brief introduction to the

Prototyping Language Editor. A complete set of commands is

listed in Appendix F and more complete details can be found

in The Synthesizer Generator Reference Manual [Ref. 10].
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VI. CONCLUSIONS AND FOLLOW-ON WORK

This thesis has demonstrated the feasibility of the

software engineering approach designed by Dr. Berzins and Dr.

Luqi as a method of breaking a complex problem into simpler

pieces both from the point of view of CAPS as a system and

also from the perspective of designing a language specific

editor using the Cornell Synthesizer Generator. Much of the

ground work has been laid in the sense that a restricted PSDL

editor, psdl.syn, has been generated which can provide the

basis for comprehensive expansion of the Prototyping System

Design Language features.

Whereas progress has been made in identifying the nature

of the problem of specifying the language-dependent features

of a language-based editor and the theory and documentation

are more clearly defined, there remains significant

additional implementation programming to transform the PSDL

editor into a tool commensurate with the remainder of the

CAPS system. The Abstract Syntax, Appendix B, the Unparsing

Declarations, Appendix D, and the Concrete Input Syntax,

Appendix E, are largely written, but untested. The work

.'emaining to complete these parts, notably in the Unparsing

Declarations, the attribute equations, fitting together the

modules, and testing and debugging the system is a

significant task. Due to the simplicity of the interface
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with the remainder of the CAPS system it is not anticipated

that the interface will cause significant problems. The most

likely problem will be the ability of the PSDL editor to

accept the PSDL code generated by the Graphics Editor. This

problem can be resolved by the unparsing declarations and the

lexical analysis. The abstract syntax should be refined and

the approach to declaring items optional should be

streamlined and simplified.

There is also application for the use of the Cornell

Synthesizer Generator in other portions of the CAPS system.

The Synthesizer Generator has great power in its ability to

transform input into various forms and is quite capable in

the areas of consistency checking and verification of

conventions. It could be adapted to assist in the tasks of

translation, scheduling, data base keying, and debugging.
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APPZNDIX A: BACKUS-NAUR FORM FOR PSDL

Optional items are enclosed in [square brackets] and items

that may appear zero or more times appear in <braces>

Terminal symbols appear in " double quotes

<psdl> : <component>

<component> ::= data_type
I operator

<datatype> ::= "type" id typespec typeimpl

<operator> ::= "operator" id operatorspec operatorimpl

<typespec> ::= "specification" [typedecl] .
<"operator" id operator _spec>
[functionality] "end"

<operator_spec> ::= "specification" interface
[functionality] "end"

<interface> ::= <attribute [reqmtstrace]>.

<attribute> ::= genericparam
I input
I output
I states
I exceptions
I timinginfo

<generic_param> : "generic" typedecl

<input> : : "input" type_decl

<output> ::- "output" type-decl

<states> ::= "states" type-decl "initially" expression-list

<exceptions> := "exception" id list

<id list> ::= <id list - id <"," id>
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<timing_infor> ::- ["maximum execution time" time]
["minimum calling period" time]
["maximum response time" time]

<time> integer [unit]

<unit> : "microsec"
I "ms"
I "sec"

I "min"
i "hours"

<reqmtstrace> "by requirements" id list

<functionality> [keywords]
[informaldesc]
[formaldesc]

<keywords> "keywords" id-list

<informal desc> ::= "description" " <" text "> "

<formal desc> ::= "axioms" " <" text 1> * if

<type_impl> "implementation" "Ada" id
I "implementation" type name ,
<"operator" id operator-impl> "end"

<operatorimpl> "implementation" "Ada" id
I "implementation" psdlimpl

<psdl-impl> data flowdiagram
[streams]
[timers]
[control constraints]
[informaT desc]

"end"

<dataflowdiagram> ::= "graph" <link>*

<link> ::= id It "1 id IV:"1 time] If->" id

<streams> "data stream" typedecl

<typedecl> id-list "i" typename <"," id list "'"
type_name>

<typename> id " [" typedecl "] "

I id

<timers> ::= "timer" id list
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<controlconstraints> "control constraints"
<constraint> "

<constraint> "operator" id
["triggered" [trigger] ["if" predicate]
[reqmts trace]]

('period" time [reqmtstrace]]
["finish within" time [reqmtstrace]]
<"output" id list "if" predicate

[reqmtstrace]>
<"exception" id [.if" predicate]

[reqmtstrace]>
<timerop id ["if" predicate]
[reqmtstrace]>

<timerop> "RESET timer"
l "START timer"
I "STOP timer''
I "READ timer"

<trigger> "by all" id list
I "by some" id list

<predicate> "not" predicate
I predicate "and" predicate
I predicate "or" predicate
I expression
I id ":" id-list

<relation> simple_expression
I simple_expression rel_op

simple_expression

<simple_expression> [sign] integer [unit]
I [sign] real
I ["not"] id
J string

["not"] "(" predicate ")"

["not"] boolean constant

<relop> "0"

, - l,,>,l

M11I

<expression> := constant
I id
J typename " " id "(" expression-list ")"
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<expression-list> ::= expression <"," expression>*

<real> integer "." integer

<sign>

<boolop> :: "and"
I "or"

1

<boolean constant> ::= "true"
I "false"
*

<string> """ <char>

<text> """ <char> """
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APPENDIX B: COMPLETE PSDL ABSTRACT 3YNTAX

root psdl; /* tree root */

optional list psdl;
psdl : PsdlNil() /* This is a completing term */

IPsdlPair(component psdl)
/* allows recursive addition of components
within the program */

component: EmptyComp() /* required as a completing term */
I DaTyComp(data_type) /* function calls */
I OpTyComp(operator)

data-type: DaTy(id type_spec operator spec) /* notice that
the keyword "type" will have to
be inserted in the actual text
of the output program */

operator: Op(id operator spec op_impl) /* notice that the
keyword "operator" will have to be
inserted in the actual text of the
output program */

/* Things begin to get a bit tricky here, notice that within
what should be a function are items which are optional here
i.e., type_decl, though not necessarily optional everywhere
i.e., type_decl in genericparam , fortunately, functionality
appears always to be optional and can be defined as optional
- consider defining an optional function */

typespec : TySpec(optional_typedecl
operatorspecList
functionality)

/* notice that there is no
optional type decl in psdl grammar.
Also note that the keywords
"specification","operator" and "end"
will have to be inserted in the actual
text of the output program */

optional list operatorspecList; /* the optional makes it
a list of zero or more
vice one or more*/
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operator_specList: Op_SpecListNil()
I OpSpecListPair(operator_spec_clause

operator_specList)
/* operatorspecclause does not exist
in psdl*/

operator_specclause: OpSpecClause( id operatorspec

optional optional_type_decl ;
optionaltype decl : OptTDeclNull()

I OptTDecl(type_decl)
/* modeled from sec 5.2 in The
Synthesizer Generator, not absolutely
sure that this whole optional fuss
isn't avoidable by declaring
type-decl to be optional in the
type_spec declaration */

or:rator_spec : OpSpec ( interface
functionality)
; /* notice that the keywords
"specification" and "end" will have to
be inserted in the actual text of the
output program */

optional list interfaceList;
interfaceList : IfaceListNil()

I IfaceListPair(interface interfaceList)

interface : Iface(attribute reqmtstrace)
; /* reqmtstrace is always optional */

attribute : EmptyAttr()
AttrGenParam(genericparameter)
AttrInput (input)
AttrOutput (output)
AttrStates (states)
AttrExceptions(exceptions)
AttrTimgInfo(timinginfo)

genericparam : GenParam(typedecl)
; /* still need keyword "generic"*/

input : Input(typedecl) /* still need keyword
Iinput"*/
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output Output(typedecl) /* still need keyword
"output" */

states : States(typedecl expression list)
/* still need keywords "states" and
"initially"*/

list expressionlist;
expression list : ExprListNil()

I -ExprListPair(expression expressionlist)

exceptions Exceptions(id list)
/* still need keyword "exceptions"*/

list id list
id list IdListNil()

I IdListPair(id id list)
/* This is written up in the grammar as a

mandatory entry followed by an optional list separated by
commas. This is represented as an ordinary list (one or more)
- may have to redefine in order to be able to insert commas
(commas OK, taken care of in unparsing declarations */

optional timinginformation;
timing_information : TimeInfoNull()

1 TimeInfo( max execution
mincall period
max_response)

optional max execution;
max-execution :MaxExecutionNull()

MaxExecution (time)

optional min_call_period;
mincall_period :MinCallPeriodNull()

MinCallPeriod(time)

optional max_response;
maxresponse :MaxResponseNull()

MaxResponse(time)
/* whereas the command is identical, there

are three keyword sequences possible: "maximum execution
time", "minimum calling period", "maximum response time"-

May have distorted meaning of the language: since time is
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already optional, this implies that could leave either of
these three in the specification without entering a time */

optional time; /* need to verify that time is always
optional - not strictly optional in timing_info*/

time TimeNull()
I Time(integer unit)
; /* notice that unit needs to be defined as

optional*/

optional unit;
unit : EmptyUnit()

I Us()
I MS()
I Sec()
I Min()
I Hours()
; /* unit selects the units of time in "microsec",

"ims " 1sec "mmin", or hours ; this doesn't look right to me,

it seems like there ought to be a scaling factor */

optional reqmts_trace;
reqmts_trace: ReqmtsTraceNull()

I ReqmtsTrace(id list)
;/* not defined in psdl as optional, but always used
optionally (this allows easier definition of phyla
that use requirementstrace)*/

optional functionality
/* if functionality is always optional and everything in
functionality is optional, then the things defining
functionality would be doubly optional- but since it appears
that the elements can be strung one after the other each
should still be defined as optional */

functionality : FunctionalityNull()
Functionality (optionalkeyword
optional informal desc
optionalformaldesc)

optional optionalkeyword;
optional_keyword: OptKeywdNull()

I OptKeywd(keyword)

optional optional informaldesc;
optionalinformal desc: OptInfDescNull()

I OptInfDesc(informaldesc)
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optional optionalformal desc;
optional formal desc: OptFormalDescNull()

I OptFormalDesc(formaldesc)

keywords: KeyWords(id list)
/* ?hissing keyword "keywords"*/

informal desc: InfDesc(text)
; /* missing keywords "description", {" and

formal desc: FormalDesc(text)

; /* missing keywords "axioms", "{", and "}"*/

/* recheck to see if must start with an empty option (look at

attribute example)*/
typeimpl: AdaTyImpl(id) /* missing keywords

"implementation" and "Ada"*/
I TyImpl(type_name optional_operatorimpl)
; /* optional-operator impl is not a psdl

grammar type. Also missing keywords
"implementation" and "end"*/

optional list optional_operatorimpl;
optional_operator impl: OptOpImplNull()

I OptOpImpl(id operator impl)
/* missing keyword "operator"*/

operatorimpl: AdaOpImpl(id) /* missing keywords
"implementation", "Ada" */

I PsdlOpImpl(psdlimpl)
/* missing keyword "implementation"*/

psdlimpl: PsdlImpl(dataflow diagram
optional-streams
optional-timers
optional control constraints
optional-informal desc)

; * missing keyword "end"*/

optional optionalstreams;
optional-streams: OptStreamsNull ()

J OptStreams (streams)
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optional optional timers;
optionaltimers: OptTimersNull()

I OptTimers(timers)

optional optional control-constraints;
optionalcontrol constraints:OptConConstrNull()

I OptConConstr(control constraints)

optional list data flow diagramList ;
dataflowdiagramList: DaFlDiagramNil()

I DaFlDiagramPair(dataflowdiagram
dataflow diagramList)

dataflowdiagram: DaFlDiagram(link)
/* need keyword "graph"*/

link : Link(id operatorid id)
/* need keywords "." and "

operatorid: Id(id time)
/* need keyword ":" Notice that time

is defined as an optional phylum */

streams: Streams(typedecl)
/* Need keywords "data stream" */

optional list type_declList;
typedeclList: TyDeclListNil()

I TyDeclListPair(type_decl type_declList)

/* this is not defined specifically in
psdl, but type decl is always used optionally
and it is defined as a list separated by
commas (like id list). Notice that keyword
" needs to be-added*/

typedecl: TyDecl(id list typename)
/* keyword ":" needs to be added*/

typename : EmptyTyName()
I TyNameId(id)
I TyNameTyId(id typedecl)
; /* remember type is always used optionally and

is declared to be optional*/

timers : Timers(id list)
/* missing keyword "timer"*/
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optional list control constraintsList;
control constraintsList:ConConstrListNil()

I ConConstrListPair(controlconstraints
control constraintsList)

/* missing keyword "control
constraints"*/

/* this construction has a list of optional and nested
optional constructs; for the most part, the constructs
themselves are always optional so will be defined as optional
the optional name method will only be used when the optional
phylum has mandatory instances*/

constraint Constraint(id trigger optional_predicate
reqmts trace time reqmts trace time reqmts trace
optional id listList
optionalexception listList
optional timeropList)

/* the last three terms are defined as
optional lists*/

optional optionalpredicate ;
optionalpredicate : OptPredicateNull()

I OptPredicate(predicate)
/* modeled from sec 5.2 in The
Synthesizer Generator */

optional list optional id listList;
optional id-listList: OptIdListNil()

I OptIdListPair(optional_idlist
optional id listList)

/* this-represents lidlist predicate
[reqmtstrace]}*/

optional id list: OptIdList(idlist predicate reqmtstrace)

; /* reqmtstrace is defined to be optional*/

optional list optionalexception listList;
optionalexception listList: OptExcepListNil()

I OptExcepListPair(optional exceptionlist
optional_exception listList)

/* this represents {id [predicate]
[reqmtstrace]}*/

optionalexceptionlist: OptExcepList(id
optional_predicate reqmtstrace)

; /* reqmtstrace is defined to be optional*/

89



optional list optionaltimer opList;
optionaltimeropList: OptTiOpListNil()

I OptTiOpListPair(optional timerop
optional timer opList)

/* this represents {id-list predicate
[reqmtstrace]}*/

optional timerop: OptTiOp(timerop id optionalpredicate
reqmts_trace)

; /* reqmtstrace is defined to be optional*/

timerop : EmptyTimerOp()
I ReadTimer()
I ResetTimer()
I StartTimer()
I StopTimer()
; /* timerop determines which timer operation

occurs i.e., "RESET timer", "START timer", "STOP timer", or
"READ timer"; hopefully there can be assigned some control
associated with this command */

optional trigger ;
trigger TriggerNull()

I ByAllTrigger(identifier list)
I BySomeTrigger(identifier list)

/* notice that this is an or construct but
the only difference is in the keywords "by all" or "by some"*/

predicate EmptyPred()
I NotPred(predicate)
I AndPred(predicate predicate)
I OrPred(predicate predicate)
I Expression(expression)
i Id(id id list)

expression EmptyExpression()
I ConstExpr(constant)
I ExprId(id)
I TyExpr(typename id expression-list)

constant EmptyConst()
I Number(numeric constant)
I Boolean(booleanconstant)
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numeric-constant: EmptyNuniber()
I Real (REAL)
I Integer (INTEGER)

boolean-constant: EmptyBool()
I True()
I False()

list expressionList; /* the optional makes it a
list of zero or more vice one
or more*/

expressionList : ExpressionListNil ()
I ExpressionListPair( expression

expressionList)
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APPUNDIX C: PSDL.SSL CURRNT PARTIAL IMPLZMENTATION

root psdl; /* tree root */

opticnal list psdl;
psdl : PsdlNil() /* This is a completing term */

IPsdlPair(component psdl)
/* allows recursive addition of components
within the program *1

component: EmptyComp() /* required as a completing term */

I DaTyComp(data_type) /* function calls */
I OpTyComp(operator)

data type: DaTy(identifier identifier identifier);
operator: Op(identifier identifier identifier)

/* notice that the
keyword "operator" will have to be
inserted in the actual text of the
output program */

identifier: IdentifierNull()
I Identifer(IDENTIFIER)

/* UNPARSING DECLARATIONS */

psdl : PsdlNil [@ :]
I PsdlPair [@ :A[ t %ni]@]

component :EmptyComp @ : "<component>"]
IDaTyComp [A : @"<data type>"]
lOpTyComp [P : @"<operator>"]

/* try A's as @'s during
refinement*/

data_type :DaTy [@: "TYPE" @ @ @ "%n"]
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operator :Op [:"OPERATOR" @ @ @ %nl

TYPE: TypeLex< "type"I"1TYPE"l >;
OPERATOR: OperatorLexc< "OPERATOR" >;
IDENTIFIER: IdentLex<[a-zA-Z] [a-zA-Z0-9]*I [2] >;
WHITESPACE: Whitespace< [\ \t\n]* >;
INTEGER: IntegerLex< [0-9]+ >;
REAL_-NUMERAL: RealLex< [0-9)+(\.[0-9]+)?([eE) [-+)2[0-9]+)?

CHARACTER: CharacterLex< '.'I'''' >;
STRING: StringLex< ((Ij[l)(I) A]) >;

Psdl {synthesized psdl t; 1
Component {synthesized component t; 1
Data_type (synthesized data_type t; }
Operator {synthesized operator t; }
Ident (synthesized identifier t; 1;
psdl - Psdl.t;
component - Component.t;
data_type - Data -type.t;
operator - Operator.t;
identifier- Ident~t
Psdl := (Component) {Psdl.t = (Component.t ::PsdlNil);

I(Component Psdl) {Psdl$1.t = (Component.t
PsdlNil$2.t);}
Component ::=(Data_type) {Component.t =DaTyComp(Data type);}

I Operator) (Component.t = DaTyComp(OPerator)-;};
Data_type : := (Ident Ident Ident) { Da t a t yp e t
DaTy(Ident$1.t, Ident$2.t, Ident$3.t); };
Operator ::= (Ident Ident Ident) {Operator.t
Op(Ident$1.t, Ident$2.t, Ident$3.t); };
Ident ::= (IDENTIFIER) {Ident.t = Identifier(IDENTIFIER); 1
transform component

on "data type" <component>:DaTyComp(<data type>)
on "operator" <component>: OpTyComp(<operaitor>);
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APPZRIDIX D: UNP3RB 1G DZCL~flT IONS

psdl :PsdlNil R@ :1
:PsdlPair [@ :"'[%n]@]

component :EmptyComp [@ :"<component>"]
IDaTyComp, [A :@"<data type>")
JOpTyComp [A :@"1<operator>11]

data-type :DaTy [@: "TYPE" @ @ @ %n]

operator :Op [@: "OPERATOR" @ @ @ %n]

type_spec :TySpec [@:"1SPECIFICATION11 @ %n%t
/* how to List an optional keyword*/

"OPERATOR" @ @ %n%t

"END"]

operator-specList:Op SpecListNil[@: :=]
I OpSpecListPair [@ :^[%n] @]

operator spec clause: OpSpecClause[A : A A]

optional type deci OptTDeclNull [@ : "<type
declaration>"]

IOptTDecl [A :A

operator_spec OpSpec [@ :"SPECIFICATION" @ %t%n

@ %b%n
"END"

interfaceList IfaceListNil[@:
IIfaceListPair [@ :A [%n]@]

interface : Iface [A ::_n A A];
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attribute EmptyAttr [P ::]
AttrGenParam [P ::- ^ ]

AttrInput [A ::= A]

AttrOutput [A :: A]

AttrStates [A A]

AttrExceptions [A ::= A]

AttrTimgInfo [A ::= A]

generic_param GenParam [@ : "GENERIC" @]

input Input [ @ :"INPUT" @ ]
/* DIDN'T USE, NOT SUPPORTED BY GRAMMAR ["%n"] @1
non comma separated list sample p 60 TSG Ref
Man. This follows Janson App B example, not App A
grammar. PSDL should support a list of inputs
need to check and see if defined elsewhere or if
input should be defined as a list */

output Output [ @ : "OUTPUT" @
/* ditto previous (input) comment */

states States [@ : "STATES" @ "%t%n"
"INITIALLY" @)

expression-list ExprListNil [@ ::-]
J ExprListPair[@ A [%n] @]

exceptions Exceptions [ : "EXCEPTIONS" @]
/* notice that second @ is a list

list id list
id list IdListNil [@:]

J IdListPair [@: A [","%n] @]

timing_information :TimeInfoNull [@ "<timing
information>"

ITimeInfo [A A- A A]
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max execution :MaxExecutionNull [@ : "<maximum
execution time>"]

MaxExecution [A ::- "MAXIMUM EXECUTION
TIME" ^]

mincall_period :MinCallPeriodNull [@ ::= "<minimum calling
period>"]

MinCallPeriod [P "MINIMUM CALLING
PERIOD" A]

max-response :MaxResponseNull [@ :: "<maximum response
time>"]

MaxResponse [A ::= "MAXIMUM RESPONSE TIME" ^]

optional time;
time TimeNull [@ ::= "<time>"]

i Time [A A A]

unit : EmptyUnit [A ::= "<unit>"]
I Us [@ : "microseconds"]
I Ms [@ "ims"]
I Sec [@ "sec"]
I Min [@ "min"]
I Hours [@ "hours"]

reqmtstrace: ReqmtsTraceNull [@ ::= "<requirements>"]
I ReqmtsTrace [^ ::= "BY REQUIREMENTS" A]

functionality : FunctionalityNull [ @
"<functionality>"]

Functionality [A ::A A 
^ 

]

optional_keyword: OptKeywdNull [@ : :- "<keywords>"]
I OptKeywd [ A :: A]

optional informal desc: OptInfDescNull "<informal
description>"] e[

I OptInfDesc[A ::= A]
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optional-formal-desc: OptFormalDescNull[@ := "<formal
description>"]

IOptFormalDesc [ :

keywords: KeyWords [::"KEYWORDS"I A]

informal-desc: InfDesc [A :="DESCRIPTION" AI}]

formal-desc: FormalDesc (A : ~"AXIOMS)" A f]

type_impl: AdaTylmpl [A : "IMPLEMENTATION Ada" @]
ITyImpl [A := "IMPLEMEMTATION1" A A

"END"

optional operator impl: OptOpImplNull R@ ::= "(<operator>"]1
IOptOplmpl ["OPERATOR" @]

operator impl: AdaOplmpl (A : "IMPLEMENTATION Ada" @1
IPsdlOpImpl [A : "IMPLEMENTATION" @1

psdl_impl: PsdlImpl

optional-streams: OptStreamsNull
IOptStreams

optional-timers: OptTimersNull
IOptTimers

optional control constraints :OptConConstrNull
IOptConConstr

data-flow-diagramList: DaFiDiagramNil
IDaFlDiagramPair

data flow diagram: DaFiDiagram
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link Link

operator id: Id

streams: Streams

type_deciList: TyDeclListNil
ITyDeclListPair

type_deci: TyDeci

type_name : EmptyTyName
TyNameld

I TyNameTyld

timers : Timers

control-constraintsList:ConConstrListNi.
IConConstrListPair

constraint : Constraint

optional_predicate :OptPredicateNull
IOptPredicate

optional id listList: OptldListNil
I OptldListPair

optional-id-list: OptldList

optional-exception listList: OptExcepListNil
IOptExcepListPair

optional-exception_list: OptExcepList
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optional-timer_opList: OptTiOpListNil
I OptTiOpListPair

optional-timer_op: OptTiOp

timer op EmptyTimer Op
I ReadTimer
I ResetTimer
I StartTimer
I StopTimer

trigger TriggerNull
I ByAliTrigger
I BySomeTrigger

predicate EmptyPred
I NotPred
I AndPred
I OrPred
I Expression

Id

expression EmptyExpression
I ConstExpr
I Exprld
I TyExpr

constant EmptyConst
I Number
I Boolean

numeric-constant: EmptyNumber
I Real
IInteger

boolean-constant: EmptyBool
I True
IFalse

expressionList :ExpressionListNil
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APPINDIX Z: CONCMNTZ INPUT SYNTAX

/*I*/ TYPE: TypeLex< "type"I"TYPE" >;
1*2*1 OPERATOR: OperatorLex<"operator" I "OPERATOR">;
/*3*/ SPECIFICATION: SpecificationLex
specification" ISPECIFICATION" >
/*4*/ END: EndLex< "end"I"END" >;
/*5*/ GENERIC: GenericLex< "generic"I"GENERIC" >;
1*6*1 INPUT: InputLex< "input"I"INPUT" >;
/*7*/ OUTPUT: OutputLex< "output"Il"OUTPUT" >;
1*8*1 STATES: StatesLex< "states" I "STATES" >;
/*9*/ INITIALLY: InitiallyLex< "initially" I"INITIALLY"

/*10*! EXCEPTIONS: ExceptionsLex<
"exceptions" i"EXCEPTIONS >;
/*11*1 COMM4A: CommaLex< ",." >;
1*12*1 MAXIMUM EXECUTION TIME: Max imumExecut ionTimeLex<
"maximum\execu~ion\time"T"MAXIMUM\EXECUTION\TIME >;
1*13*1 MINIMUM_-CALLING PERIOD: Min imumCall1ingPeriodLex<
"minimum\calling\perioi" I "MINIMUM\CALLING\PERIOD"I >;
1*14*1 MAXIMUM -RESPONSE TIME: MaximumResponseTimeLex<
"maximum\responise\time"T"MAXIMUM\RESPONSE\TIME"I >;
/*15 *1MICROSEC: MicrosecLex< "microsec"Il"MICROSEC" >;

/*16 */MS: MsLex< "lms"lIMS" >;
1*17 */SEC: SecLex< "seclli"SEC" >;
/*18 */MIN: MinLex< "min"Il"MIN" >;
1*19 */HOURS: HoursLex< "hours"Il"HOURS" >;
1*20*1 BY_- REQUIREMENTS: ByRequirementsLex<
"lby\requirements" lI"BY\REQUIREMENTS"I >;
1*21*1 KEYWORDS: KeywordsLex< "keywords" I "KEYWORDS" >;

1*22*1 DESCRIPTION: DescriptionLex<
"description" I "DESCRIPTION" >;

1*23*1 TEXT: TextLex< "text"lITEXT" >;
1*24*1 AXIOMS: AxiomsLex< "axioms" I "AXIOMS" >;
1*25* I IMPLEMENTATION: ImplementationLex<
"implementation" i "IMPLEMENTATION"I >;
/*26 */ A.DA: AdaLex< "ada"I"Ada"J"ADA" >;
/*27*/ GRAPH: GraphLex< "graph"I"GRAPH" >;
/*28 */PUNCT PERIOD: PunctPeriodLex< 11." >;
/*29 */ ARROW: ArrowLex< "->" >;
/*3Q*/ DATASTREAM: DataStreamLex<
"data\stream"lI"DATA\STREAM" >;
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/*31 *1COLON: ColonLex< ":" >;
1*32 *1LEFT BRACKET: LeftBracketLex< "">;

/*33 *1RIGHT_-BRACKET: RightBracketLex< "">;
/*34*/ TIMER: TimerLex< "timer"I"TIMER" >;
1*35*! CONTROL CONSTRAINTS: Cont rolConst raint sLex<
"control\constraints" I"CONTROL\CONSTRAINTS" >
/*36*! TRIGGERED: TriggeredLex< "triggered" I"TRIGGERED"'

/*37*/ TIME_-PERIOD: TimePeriodLex< "period"I"PERIOD" >;
/*38*/ IF: IfLex< "if"j"IF" >;
/*39*/ FINISH WITHIN: F i n i s h W i t h i n L e x <
"finish~within" I"FINISH\WITHIN" >;
/*40*! EXCEPTION: ExceptionLex< "exception" I"EXCEPTION"'

1*41*1 RESET: ResetLex< "reset"I"RESET" >;
/*42*! START: StartLex< "start"j"START" >;
/*43*/ STOP: StopLex< "stop"I"STOP" >;
/*44*/ BY -ALL: ByAllLex< "by\all"I"BY\ALL" >;
/*45*/ BYSOME: BySomeLex< "by\some"I"BY\SOME" >
1*46*/ NOT: NotLex< "not" I"-" I"NOT" >;
/*47*/ AND: AndLex< "and"I"""AND" >;
/*48*/ OR: OrLex< "or"J"I""OR" >;
/*49*/ LEFTPAREN: LeftParenLex< "">;

/*50*/ RIGHT_-PAREN: RightParenLex< "">;

1*51*1 TRUE: TrueLex< "true"I"TRUE" >;
/*52*! FALSE: FalseLex< "false"I"FALSE" >;
CLINEBREAK: CLinebreakLex< <NO WHITESPACE>[\n] >;
LINE: LineLex< <NO WHITESPACE> [A \n\}] (A \n\}]* >;

LCURLY: LCurly< [\1] <NO WHITESPACE> >;
RCURLY: RCurly< [\} <INITIAL> >;
WHITESPACE: < [\ \t\n] I(\][- \- A}*\] >;

IDENTIFIER: IdentifierLex< [a-zA-Z] [a-zA-ZO-9_\$I* >;
INTEGER: IntegerLex< [0-9]+ >;
REALNUMERAL: RealLex< [0-9]+(\.[0-9]+)?([eE][-+]?[0-9]+)?

CHARACTER: CharacterLex< '*' j'''' >;
STRING: StringLex< '(('')I [Ar])((Ii)1[Al])+l >;

101



APPENDIX F: PROTOTYPING EDITOR COMMANDS

The following commands perform the indicated functions:

ESC-^C, exit
AXAC,

AC

return to shell.

Ai, execute-command <name>
ESC-AG

specify a command or unique command prefix at
COMMAND prompt at the command line.

ESCAG, illegal-operation
AG

AXA G
cancel incomplete command key-binding or partial
entry on the command line.

ESC-s start-command
execute command with parameters contained in the
current form.

ESC-c cancel-command

cancel command awaiting execution.

AX! execute-monitor-command <command-line>
execute UNIX <command-line> put its output into a
textfile buffer in a separate window.

ESC-r repeat-command
repeat last command.

A return-to-monitor

recursively call shell.

AL redraw-display

refresh screen.

set-parameters
modify editor parameters including indentation,
margins, word wrapping, tab stops, and help levels.

ESC-? apropos <keyword>
a listing of commands containing a given keyword.
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^X^B list-buffers

a listing of all buffers in a textfile buffer.

Xb switch-to-buffer <buffer-name>

put <buffer-name> in current window.

new-buffer <buffer-name phylum>

create a new buffer named buffer-name

AXAR read-file <file-name>
replace current buffer contents with file-name,
prompt for write of old file in buffer.

AX^V visit-file <file-name>
read a named file into a into a corresponding
buffer, replacing the previous contents of the
buffer.

AXs write-current-file

write buffer into its associated file.

AX^W write-named-file <file-name format>
write buffer to file-name in the format specified
(text or structure)

AXAM write-modified-files
write each modified file in the buffer to its
associated file.

AXAF write-file-exit
write each modified file in the buffer to its
associated file then exit the buffer.

AXAI insert-file <file-name>
replace the current selection of the buffer with
file-name.

write-selection-to-file <file-name format>
write current selection to file-name in the format
specified.

^X2 split-current-window

split the current buffer into two windows each
displaying the current buffer but each separately
modifiable.

AXl delete-other-windows
delete all windows except the current one.
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AXd delete-window

delete the current window and replace it with the
previous one.

Xz enlarge-window

raise height of current window by one line.

^X^Z shrink-window

reduce height of current window by one line.

^Xn next-window

go to next window.

^Xp previous-window

go to previous window.

help-off
turn the help pane height to zero.

help-on
turn the help pane height to size set in parameters.

ESC-^Xz enlarge-help
Increase help pane size by one line.

ESC-AX^Z shrink-help
reduce help pane size by one line.

^N forward-preorder
go to the next resting place in preorder, skip over
optional constituents. If in text, move down to next
line.

^P backward-preorder
go to the previous resting place in preorder, skip
over optional constituents. If in text, move up to
previous line.

"F right
same as forward-preorder unless text, in which case
moves selection one character to the right.

^B left
same as backward-preorder unless text, in which case
moves selection one character to the left.

AM forward-with-optionals
go to the next resting place in preorder, stop at
optional constituents.
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AH backward-with-optionals

go to the previous resting place in preorder, stop at
optional constituents.

ESC-^N forward-sibling
skip past all resting places in the current
selection, advance to the next preorder sibling in
the abstract syntax tree, if applicable, else ascend
to the enclosing resting place and advance to its
next sibling. Skip over optional constituents.

ESC-AP backward-sibling
skip past all resting places in the current
selection, advance to the previous preorder sibling
in the abstract syntax tree, if applicable, else
ascend to the enclosing resting place and advance to
its previous sibling. Skip over optional
constituents.

ESC-AM forward-sibling-with-optionals
as forward-sibling, but stopping at optional
constituent placeholders.

ESC-AB backward-sibling-with-optionals
as backward-sibling, but stopping at optional
constituent placeholders.

ESC-\ ascend-to-parent
go to nearest enclosing resting place.

ESC-< beginning-of-file
go to root of abstract syntax tree.

ESC-> end-of-file
go to extreme right resting place of abstract syntax
tree.

advance-after-parse
automatically substituted for forward-with-
optionals when following textual entry.

advance-after-transform
automatically substituted for forward-with-
optionals when following a transformation command.

forward-after-parse
automatically substituted for forward-preorder when
following textual entry.
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^A beginning-of-line

got to beginning of line.

AE end-of-line
got to end of line.

scroll-to-bottom
scroll bottom line of window to center of window.

scroll-to top
scroll to put first line of object at top of window.

ESC-! selection-to-top
scroll to put first line of selection at top of
window.

AV next-page

move object view one page down.

ESC-v previous-page

move object view one page up.

AZ next-line
move object view one line down.

ESC-z previous-line
move object view one line down.

ESC-{ page-left
move object view one page left.

ESC-} page-right
move object view one page right.

column-left
move object view one column left.

column-right
move object view one column right.

ESC-b pointer-left
move the cursor one character to the left.

ESC-f pointer-right
move the cursor one character to the right.

ESC-p pointer-up
move the cursor one character up.
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ESC-d pointer-down
move the cursor one character down.

pointer-long-left
move the cursor eight characters to the left.

pointer-long-right
move the cursor eight characters to the right.

pointer-long-up
move the cursor eight characters up.

pointer-long-down
move the cursor eight characters down.

ESC-, pointer-top-of screen
move cursor to first line of screen.

ESC-. pointer-bottom-of screen
move cursor to last line of screen.

ESC-@ select
select-start followed by select-stop.

select-start
go to the production instance whose unparsing scheme
caused the printing of the character located at the
cursor and begin dragging.

select-stop
stop dragging.

ESC-t select-transition
toggle between select-start and select-stop.

ESC-( extend
extend-start followed by extend-stop.

extend-start
change selection to the least common ancestor of the
apex of the current selection and the production
instance which generated the character under the
cursor.

extend-stop
stop dragging.

ESC-X extend-transition
toggle between extend-start and extend-stop.
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AW cut-to-clipped
move the selection of the current buffer to a buffer
named CLIPPED. Replace previous contents of CLIPPED.

ESC-AW copy-to-clipped
copy the selection of the current buffer to a buffer
named CLIPPED. Replace previous contents of CLIPPED.

Ay paste-from-clipped

move into the selection of the current buffer from
CLIPPED. Contents of CLIPPED is unchanged.

ESC-AY copy-from-clipped
copy into the selection (a placeholder) of the
current buffer from CLIPPED. Contents of CLIPPED is
unchanged.

ESC-AT copy-text-from-clipped
copy text into a text buffer immediately preceding
the selection of the current buffer from CLIPPED.
Contents of CLIPPED is unchanged.

AK delete-selection
move into the DELETE buffer the selection of the
current buffer. Replace previous contents of DELETE.

AD delete-next-character
delete character under cursor.

DEL delete-previous-character
delete character to left of cursor.

ESC-d erase-to-end-of-line
erase from character under cursor to end of line.

ESC-DEL erase-to-beginning-of-line
erase from character before cursor to beginning of
line.

AK delete-selection

delete entire line.

AJ new-line
add a line in the text buffer.

text-capture
put the text of the current selection into a text
buffer.
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AXAU undo
restore the selection to its state before the text-
capture and delete the text buffer.

dump-on
split the window into the current buffer and a "dump
buffer". Display the attributes of the corresponding
apex of the selection and the attributes of the non-
resting-place nodes immediately below the apex in the
"dump buffer".

dump-off
turn off the dynamic updating of the "dump buffer".

show-attribute <attribute-name buffer-name>
copy the value of attribute-name of the current
selection into buffer-name. This gives buffer-name
the syntactic mode of the attribute.

write-attribute <attribute-name file-name>
write attribute-name, the attribute of the current
selection into file, file-name.

ESC-AF search-forward <text phylum name operator-name>
forward preorder search from current selection to
next occurrence of a STR value corresponding to text,
an instance of a term of the given phylum, or an
instance of a term of the given phylum, or an
instance of a term having the given operator. After
finding the end of the object, continue search by
wrapping around to the root.

ESC-^R search-reverse <text phylum-name operator-name>
reverse preorder search from current selection to
next occurrence of a STR value corresponding to text,
an instance of a term of the given phylum, or an
instance of a term of the given phylum, or an
instance of a term having the given operator. After
finding the end of the object, continue search by
wrapping around to the rightmost leaf. [Ref. 101

The mouse can be used to point anywhere on the object

pane, and click to a new selection. The mouse can be used in

conjucntion with the select-start/select-stop commands to

drag between characters in a given production. [Ref. 10]
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The middle button activates a menu with the following

commands: edit, cursor, windows, file, and search. (Ref. 10]

The edit command, on dragging the mouse to the right

expands to the following commands

apropos
text-capture
undo
cut-to-clipped
copy-to-clipped
paste-from-clipped
copy-from-clipped
copy-text-from-clipped
delete-selection
repeat-command
alternate-unparsing-toggle
alternate-unparsing-on
alternate-unparsing-off
set-parameters
dump-on
dump-off. [Ref.10]

The cursor command, on dragging the mouse to the right

expands to the following commands

ascend to parent
forward-preorder
forward-sibling
forward-sibling-with-optionals
forward-with-optionals
backward-preorder
backward-sibling
backward-sibling-with-optionals
backward-with-optionals
end-of-file
selection-to-top. [Ref.10]

The windows command, on dragging the mouse to the right

expands to the following commands

split-current-windows
delete-other-windows
delete-window
help-off
help-on
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enlarge-help

shrink-help. [Ref.lO]

The windows command, on dragging the mouse to the right

expands to the following commands

list-buffers
switch-to-buffer
new-buffer
read-file
visit-file
insert-file
write-current-file
write-named-file
write-modified-file
write-file-exit
write-selection-to-file
write-attribute
exit. [Ref.lO]

The search command, on dragging the mouse to the right

expands to the following commands

search-forward
search-backward. [Ref.10]

Clicking on the right mouse button gives the

transformation block which expands according to the context

of the highlighted item. [Ref. 10]
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APPZNDIX F: PARTIAL GLOSSARY OF TERMS FROM
THE SYNTHESIZER GENZRATOR REFERENCE MANUAL

abstract syntax phylum - in an attribute equation of an entry
declaration, the abstract syntax phylum is a variable
denoting the selected subterm or sublist of the edited
buffer ([Ref. 10] page 32)

abstract syntax - language meaning as defined by grammar

alphabet - a finite set of symbols

alternate unparsing scheme -
***operator [ left-side : right-side ];
operator [ left-side ::= right-side ]; *

attribute equation - (associated with productions of the
abstract syntax) defines translation from text to
abstract syntax

- defines an attribute as the value of an expression
defined in terms of other attributes of the production
and is associated with every production in the
grammar([Ref. 10] page 23).

***** * phylum : operator , ... , operator { equations
I operator , ... , operator { equations }

I operator, ... , operator {equations I
([Ref. 10] page 26)

attribute - used to describe context dependent features of a
language attached to a phylum by a declaration that
specifies the name of the phylum, the type of each of the
attributes and whether each attribute is synthesized or
inherited.([Ref. 10] page 23) An attribute's type may be
one of the built-in phyla or user defined.

- characteristic, specific thing which means something
within the context of the language or what one is doing
with the language (i.e., data type of integer, or
coercion of an integer to a real type)
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- synthesized
- ******phylum0{

.synthesized phyluml attributel;

inherited phylumk attributek;
};** *** * ****** **

Within the attribute equations of a production, each
synthesized and inherited attribute of a phylum
occurring in the production is a variable whose value
is determined by its attribute equation in the
production. ([Ref. 10] page 32)

- inherited

- local
Used to attach attributes to productions rather than
phyla. Within the attribute equations of a
production or entry declaration, each local attribute
of the production or entry declaration in a variable
whose value is determined by its corresponding
attribute equation. A local attribute's name denotes
that attribute; the attribute's declaration must
preceed any use of it's name in an attribute
equation.

attribute expression - used to force the attribution of a
previously unattributed term:

**********expression {equations}.attribute************([Ref.
10] page 47)

- the value of this expression is computed as follows:
(a) the expression is evaluated, yielding some attribute

(but as yet unattributed) term T of a phylum for which
attribute is an attribute,

(b) the inherited attributes of T are defined by the
given equations

(c) the value of T.attribute is computed by demand and is
returned. ([Ref. 10] page 47)

attribute gramar - extends a context free grammar by
attaching attributes to the symbols to the symbols of
the grammar

attribute types - either built-in phyla or user defined
phyla, using exactly the same rules as in the definition
of abstract syntax.
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- defined with grammar rules ([Ref. 10) page 47)

attribute declaration - associate attributes with
nonterminals and productions

attributed - decorated with computed values that characterize
the term

attribution rules- specify syntax directed computations on
terms

buffer selection - either an entire subtree of the buffer
contents or an interior subtree that denotes a sublist of
a list phylum.

- displayed according to the unparsing schemes of its
constituent productions i.e., either editable as text or
immutable (an immutable section may have constituents
that are editable)

- if a selection is editable as text, it can be modified
character-by-character ([Ref. 10) page 61). When the
buffer selection is changed, the portion just edited is
parsed and syntactacally checked and if found to be in
error, the error is marked and the next selection is
cancelled.

buffer - contain objects

- normally a file is contained in a buffer

circularity - ([Ref. 10] page 29)

- type 1 - indicates a circularity in the dependencies of
an individual production

- type 2 - indicates a circularity in the approximation of
the production's transitive dependencies

- type 3 - circularity induced by the dependencies that
are added between attribute partitions.

clipping mode - w is the absolute right margin ( [Ref. 10]
page 55)
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combination attribute declaration and associated production -

********phylum : operator, , operator (argument phyla)

{equations}
I operator, ... , operator (argument phyla)

(equations) ...
operator, ... operator (argument phyla)

{equations}

completing term - a distinguished term that completes a
phylum declaration ... (cannot be circularly defined)

concrete input syntax - determines the structure of edited
text and its translation to abstract form.

concrete syntax phylum - a variable denoting the parse tree
of the parsed input text.

concrete input syntax - how the terms of a phylum can be
given a concrete input representation so that text files
can be read and components of a term can be entered as
text. ([Ref. 10] page 61)

conditional unparsing item - a list of unparsing items
enclosed in square brackets. (example [Ref. 10] page 60)

conditional expression -

- with expression - a multi-branch permitting
discrimination based on the structure of the value of a
given expression.

********with (expression)(
patterni: expressioni,
pattern2: expression2,

patternn: expressionn
) *******************

conditional expression - ****expressionl ?
expression2:expression3 *** ([Ref. 10] page 44)

consistently attributed derivation tree - as edit, transform
from one syntactically well formed tree to another
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context-free grammar - (basically means that can determine
the meaning of a language without having to have it in
context)

- finite set of variables (nonterminals) each of which
represents a language

- if meaning or a string is unambiguous using a PDA (push
down automaton)

- used recursive descent parsing or a table driven scheme.

declaration - used to specify an editor

demand attribute - an attribute that will be given a value
only when necessary i.e., only when a demand is placed on
them for their value rather than being automatically
maintained whether their values are needed of not. A
demand for attribute a arises either directly from a need
to display a on the screen or indirectly from the need to
evaluate another attribute that depends on a. Demand
attributes may be arguments of regular attribute and
vice versa.

********demand synthesized phylum attribute ;
demand inherited phylum attribute ;
demand local phylum attribute ;

derivation tree - superimpose a structure on the words of a
language that is useful in applications such as the
compilation of programming languages

- also represents expressions and control structures - a
tree that defines how a tree can be parsed.

display representation of term t - ( [Ref. 10] page 52)
- display string S(t)
- display array A(S(t),w)

display string - let t be a term. The string S(t) is defined
inductively : ( [Ref. 10] page 53)

- If t is a value of a primitive phylum, then S(t) is
chosen according to the table of display formats found on
[Ref. 10] page 53
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- If t is not primitive, it is op((tl, ... , tn) for some
operator op and subterms tl, ...tn.

display array - A(S(t), w), the two dimensional textual
representation of a term t is created by interpretint
each character of the display string during a left to
right scan. ( [Ref. 10] page 54)

editing transaction - text editing, structural
transformation, or system command

entry declaration - in order for a selection with apex
operator op of phylum p to be text editable, there must
exist at least one entry declaration for p.

*********abstract-syntax-phylum
concrete-syntax-phylum.attribute ;
abstract-syntax-phylum-concrete-syntax
-phylum.attribute{equations};
********************************** ([Ref. 10] page 63)

entry declaration - defines what part (subset) of the input
syntax is recognized at any part of the program
(dependent on editor cursor position).

- defines the correspondence between the abstract syntax of
editable objects and subsets of the input syntax

- used to temporarily establish a linkage between a

nonterminal in an abstract syntax tree being edited and
the root nonterminal of a parse tree for some analysed
text. ([Ref. 10] page 32 )

equation declaration - defines the value of attributes in
terms of other attributes that occur in the production

evaluation scheme -
ordered - (Default) a condition sufficient to guarantee

noncircular grammar ([Ref. 10] page 28)
nonordered - (not recommended) [Ref. 10] page 30

expression - a formula denoting an unattributed term. Used

in attribute equations of productions, function
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declarations, transformation declarations and unparsing
declarations. ([Ref. 10] page 31)

factoring - a process used in both production and lexeme
declaration to describe the rule using less space ([Ref.
101 pages 12 & 15)

formal parameter - Each formal parameter of a function is a
variable that denotes the value of the corresponding
actual parameter passed to the function. Formal
parameters are named by identifiers. ([Ref. 10] page 34)

formatstrings - see interpretation modes

function declaration - operation to abstract something into a
function

**phylum0 identifierO (phyluml identifier, ... , phylumk

identifierk)
{expression}; *********** ([Ref. 10] page 30)
- declares identifierO to be a k-ary function with result
phylum phylumO, and has, for each 1 <= i <= k, a formal
parameter name
identifieri of type phylumi. The body of the function is an
expression over identifierl, ... , identifierk that must
evaluate to a term in the result phylum, phylumO.([Ref. 10]
page 30)

function restrictions
- argument type phyla must be declared
- declarations are global
- can't be declared within another function
- can't access attribute values not passed as parameters
- functions are second class citizens
- functions can be recursive
- details on [Ref. 10] page 30

function - a rule for determining a new term given k argument
terms

- declarations of functions (written in SSL
- predefined library routines (sec 2.5 [Ref. 10])
- foreign functions (written in C) (sec 5.1 [Ref. 10])
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grmar - a type definition mechanism that in which the

nonterminal symbols are type names

grammar rules - productions of a context-free grammar

graph - consists of a finite set of vertices and a set of
pairs of vertices called edges

identifier - a sequence of letters, digits, or underscores
that are used in editor specifications to name phyla,
operators, functions, and attributes.

identifier convention - lower-case - phyla of abstract syntax

CapitalizedWords - operators and functions
lower case - attributes
CAPITALIZED - phyla of lexemes and phyla used

for attribute types
CapitalizedWords - phyla for input syntax

indentation commands - ( [Ref. 10] pages 55 & 56)
%t - moves the left-margin one indentation unit to the
right
%b - moves the left-margin one indentation unit to the
left
%n- displays text following it on the next line
%o- optional line breaks (prefered places where the

display of a line may be divided into separate lines)
%c- connected break (permits specification of a display

in which either all text of an unparsing grouping
appears on the same line or all connected line
breaks in the group are taken.-SEE ALSO table [Ref.
10] page 56

input symbol - next token under pointer in program

input syntax - determines the structure of edited text and
its translation into abstract form

insert-file - Let s be either the result of text editing or
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the contents of a text file read in by the insert-file
command. Then, s is translated to a term as following

1. The string is parsed and the parse tree t' of phylum
p' is produced.

2. the parse tree t' is attributed and some designated
attribute a of p' provides the value t that replaces
the currently selected subterm. After the attribute
p'.a is extracted from t', the parse tree is thrown
away.([Ref. 10] page 62)

interpretation modes - based on Synthesizer Specification
Language (SSL) compile-time flag 'formal-strings''
[Ref. 10] page 54)

- if format strings is true - every percent sign that
occurs in S(t) will be interpreted as a formatting
command

- if format strings is false - percent signs are
interpreted as formatting commands only if they arise
from quoted unparsing items of unparsing schemes (default
mode)

k-ary operator - a constructor-function mapping k terms to a
term.

language - set of strings of symbols from some one alphabet

let-ezpression - bind values to names or when the structure
of a value is known in part and one desires local names
for its constituents.([Ref. 10] page 45)

******* let patternl = expressionl in (expression) *****

lezemea - phyla consisting of sets of strings - sub-phyla of
STR (predefined primative phylum denoting all possible
character strings)

*******phylum : lexeme name < regular expression>*********
which means that if you can generate a string using the
regular expression, then that string belongs to the named
phylum (Ref. 10] pages 13,14)

- psdl.lex.ssl is an example of lexemes

120



matched value - in a with expression, the first pattern that
matches the expression value([Ref. 10] page 42).

modification - a change to a program by transformation,
command or text editing

noncircularity - it must not be possible to build a
derivation tree in which attributes are defined
circularly.

nonterminal - a symbol, which when applied to an input
symbol, points to a new production

nullary operator - the result of applying itself

object- terms that are created, modified and/or destroyed

operator - (is typed)- a named production- used in
computational expressions both as a record constructor
and as a selector that discriminates between variants

output attribute - a variable ([Ref. 10] page 25)

parenthesized for grouping - (expression) ([Ref. 10] page 46)

parsing declaration - define productions of a grammar to be
used for parsing text and the phylum of corresponding
parse trees

- to translate a string s, create a parse tree t' of some
given phylum p'. Associate concrete input languages with
phyla in such a way that each string uniquely determines
a parse tree. ([Ref. 10] page 64)

path - a sequence of vertices such that there is an edge
connecting every vertice between the origin and the
destination.

pattern - <phylum> and [phylum] are patterns
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- pattern variables are patterns
- both '*'' and 'default'' are patterns
- a k-ary operator op applied to k patterns is a pattern
a n d i s w r i t t e n

************op(patternl,...patternk)*********
- a pattern variable followed by the keyword "as''

followed by a pattern is a pattern.

************* pattern-variable as pattern *
- Let p be a pattern and t be a term. Then p is said

to match if :
- when p is [phylum I and t is equal to the phylum's

completing term or when p is <phylum> and t is equal
to the phylum's placeholder term

- when p is the binding occurrence of a pattern
variable pv, in which case pv is bound to t. when p
is a bound occurence of a pattern variable pv that
has been bound to some term t' and t==t'

- when p is either * or 'default''
- when p is op(pl, ... , pk) and t is op(tl, ..., tk),

and pi matches ti for all i between 1 and k. If the
op is nullary and has been declared earlier in the
specification, the parentheses may be omitted.

- When p is pv as p' and p' matches t and either (el)
this is the defining occurence of pv or (e2) it is a
bound occurence of pv and pv has been bound to some
pattern values - variables bound to the matched
constituents in a with statement ([Ref. 10] page 42)

pattern variables - can inherit attributes ([Ref. 10] page
34)

phylum - the set of terms derived from a given nonterminal

symbol

- contains a distinguished term called a completing term

- contains a distinguished term called a placeholder term

- a nonterminal symbol, taken as a type name denoting a set
of values

- collections of abstract terms that can be used to compute
with, but have no concrete representation.
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phylum declaration - defines productions, nonterminal symbols
and operator names - two kinds:

production - defines a new operator and includes all
terms constructible from by that operator in a given
phylum.

***phyluml : operator(phyluml phylum2 ... phylumk);***

lexeme - phyla consisting sets of strings; a sub-phyla of
STR

phylum mixing production and lexeme - see [Ref. 10] page 16

phylum occurence - Within the attribute equations of a
production each phylum occurence is a variable whose
value is the term derived from that occurence in the
particular instance of that production. Let X be one of
the phyla occurring in the given production. If phylum X
occurs only once in the production, then the name X is
sufficient to identify that occurrence. If phylum X
occurs more than once, then the names X$1,X$@, etc.
identify the different occurrences of X in the
production. The abbreviation $$ is a synonym for
phylumO. ([Ref. 10] page 32)

phylum types - primitive

- primitive values are considered to be derivation
trees derived from an infinite collection of
productions associated with the predefined
nonterminals(BOOL, INT, REAL, CHAR, etc.)

- user defined
- declare in terms of other phyla or recursively in

terms of themselves.
- list
- a linear list of phyla
- optional
- a phyla whose placeholder is not required to be

filled in
- an optional phylum can have any number of
productions, but one of them must be a nullary
production; the completing term is the term
constructed from this nullary term

- textfile
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- predefined as a list of zero or more lines of
text

- root declaration
- declares the phylum of editable objects.

placeholder term - a distinguished term that ... when
selected, can be replaced with an edited object;
conversely, when an object is deleted, it is replaced
with the placeholder term

- when unparsed, represents a class of objects that can be
inserted at that location - in the case of a non-optional
non-list phylum, the placeholder term is the completing
term - ****<phylum>*********([Ref. 10] page 35)

precedence -
- all unary operators have a higher precedence than binary
operators

- binary operator precedence ([Ref. 10] page 47 table)

precedence declaration - define precedence and associativity
of terminal symbols - ([Ref. 10] page 47)

primitive phyla (predefined) -
BOOL - Truth values
INT - Integers
REAL - Floating point
CHAR - Characters
STR - Char strings
PTR - References to SSL values
ATTR -References to attributes
TABLE - Hash tables

principal unparsing scheme - used by default when the
production is instantiated. After that, the user may
choose between principle and alternate schemes.
********phylum : operator [ unparsing scheme ] [ unparsing
scheme ]; ******** (p49)

production - a phylum declaration that defines a new operator
and includes all terms constructible by that operator in
a given phylum.
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production rules - direct the translator to the next
potential language construct(s)}

property declarations - specify special properties of phyla
i.e., - optional

- a phylum represented by a null phylum(empty string
completing term) that can be replaced or ignored
*****optional phyluml, ... , phylumk; ************

- an optional phylum can have any number of productions,
but one of them must be a nullary production; the
completing term is the term constructed from this nullary
term

- lists - a list phylum is treated like a linear list of
items; an item can be inserted before, after, or in the
middle of the list ([Ref. 10] page 40 lists built-in
operators :: (concatenation), @ (append))
*****list phylum1, ... , phylumk; ******
since all insertions are made at placeholders, in a list,
a placeholder may appear before and after every item.
For both the list and optional list phyla, the "in
between'' placeholders are implicitly optional, and have
the properties of optional phyla. - A list phylum must
have exactly two productions([Ref. 10] page 21) a nullary
production and a binary production that is right
recursive
****************list calc;

calc: CalcNil()
ICalcPair(exp calc)

- the completing term of a nonoptional list phylum is the
single element list constructed by applying the binary
production {ICalcPair(exp calc)) to the completing term
of its left son {the completing term of exp : Null() )
and to the list's nullary term {CalcNil() } to construct
the expression {CalcPair(Null(), CalcNil())}

- the binary production of calc applied to the completing
term of exp and the nullary production of calc.
********************[phylum*********([Ref. 10] page 35)

- optional list
*****optional list phyluml, ... , phylumk; *
The difference between a list phylum and an optional list
phylum is that the list phylum treats lists of 1 or more
(the placeholder term remains until at least one item has
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been inserted into the list) while the optional list
phylum treats lists of 0 or more.

- the completing term of an optional list phylum is the
constant term constructed from the nullary production.
the place holder term is the same as a nonoptional list
phylum ([Ref. 10] page 22).

relational operations - a total order is defined on the
universe of values ([Ref. 10] page 41)

resting place - the node at which the apex of a selection can
rest (such nodes are selectaable)

- a place where the editor stops to insert a phylum.

resting-place-denoters - symbols (@, ^, ..) that correspond
to the phyla occurences in the production whose display
format is being defined.( [Ref. 10] page 51)

- determine the resting places of a term, those nodes at
which the apex of a selection can rest. Such nodes are
said to be selectable. ( [Ref. 10] page 51)

root declaration - declares the phylum of editable objects.-
specifies the root nonterminal symbol of the grammar-

scanner - program that feeds tokens to the parser (tokenizes
the input file for the parser)

selectable - those nodes at which the apex of a selection
can rest. Such nodes are said to be selectable. ( [Ref.
10] page 51)

set-parameters - command to set tab length, margins etc.
[Ref. 10] page 54) & sec 3.1

term - the application of a k-ary operator to k terms of the
appropriate phyla

- the objects created, modified and and destroyed by the
editor user
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- values computed as attributes of terms are themselves

terms

- derivation tree derived from nonterminal symbol

- used as both abstract representations of objects to be
edited and as computational values

- derivation tree with respect to the underlying abstract
syntax of the language

- a given term, in different instances may be both an
attribute value and a piece of the abstract syntax of an
object being edited.

terminal symbols - a type definition mechanism in which
nonterminal symbols are type names and each nonterminal
symbol, taken as a type name, denotes a set of values
known as a phylum.

terminal - primitive symbols in a language

text-capture - makes the textual representation of the
{apex?} term available for modification in an edit
buffer. Any overwriting of or erasing of a character
implies a text capture ( [Ref. 10] page 49-50)

textfile - a phylum that is predefined as a list of zero or
more lines of text - User specified phyla can
incorporate textfile constituents ([Ref. 10] page 22).

***** list textfile;
textfile: TextFileNil()
i TextFilePair( textline textfile)

textline: TextLineNil()
i TextLine(STR)

token - defined by rules (not in grammar) in the
lexigraphical rules

transformation - determines a replacement value for the
selected subterm as a function of it's current value
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transformation declaration - specifies how to restructure an
object when the component where the cursor is pointing
matches a given structural pattern

tree - directed graph such that there is one root and every
child except the root has only one parent, and successors
from each vertex are ordered from left to right.

unparsing declaration - define the output representation of a
phylum

unparsing declarations - how the terms of a phylum can be
given a concrete output representation so that they can
be displayed on the screen or written to a text file.

unparsing declarations - ([Ref. 10] page 48)
- two dimensional textual representation of terms
- selectable components of terms
- default editing modes of the selectable components

*******phylum : operator [ unparsing-scheme ]; ** * * * * * * *

which specifies unparsing properties for the production:

phylum : operator (arguments) ;

unparsing items - interspersed among the
resting-place-denoters on the right hand side of an
unparsing scheme are zero or more unparsing items. ([Ref.
10] page 52)

- quoted STR constants

- phylum occurences of the corresponding production

- attributes of phylum occurences of the given production

- conditional unparsing items

unparsing lists - need to separate rather than terminate list
items ([Ref. 10] page 59)

upward remote attribute sets - within the equations of a
production p, it is possible to refer nonlocally to the
attributes of a different production that necessarily
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occurs above instance of production p in a term. ([Ref.

10] page 33 for details)

value of the variable - The term bound to a variable.

variable - a name bound to a term. The term bound to the
variable is known as the value of the variable. ( [Ref.
10] page 31)

variable restrictions
- can't be rebound
- if involve an attribute, then the attribute must be
declared before before the variable ([Ref. 10] page 31)

well-formedness - there must be exactly one equation for
every output attribute of each production.

word-wrapping mode - w is the minimum of the absolute right
margin and the current width of the window in which the
term is being displayed. ( [Ref. 10] page 55)

129



LIST OF REFERENCES

1. Berzins, V., "Software Engineering," class notes provided at
Naval Postgraduate School, Monterey, California, Spring
Quarter 1988.

2. MacLennan, B.J., Principles of Programming Languages:
Design, Evaluation, and Implementation, 2d ed, pp. 261-263,
328, Holt, Rinehart and Winston, 1987.

3. Luqi, Rapid Prototyping for Large Software System Design,
Ph.D. Thesis, University of Minnesota, Duluth, Minnesota, May
1986.

4. Reps, T.W., and Teitelbaum, T., The Synthesizer Generator,
pp. 18-67, Springer-Verlag, 1988.

5. Knuth, D.E., "Semantics of Context-Free Languages,"
Mathematical Systems Theory, v.2, pp. 127-145, June 1968.

6. Knuth, D.E., "Semantics of Context-Free Languages:
Correction," Mathematical Systems Theory, v.5, pp. 95-96,
March 1971.

7. Reps, T.W., and Teitelbaum, T., The Synthesizer Generator
Reference Manual, 2d ed., pp. 1-105, Department of Computer
Science, Cornell University, 1987.

8. Notkin, D., "The GANDALF Project," The Journal of Systems
and Software, v.5, pp. 91-106, May 1985.

9. Ellison, R.J., and Staudt, B.J., "The Evolution of the
GANDALF System," The Journal of Systems and Software, v.5,
pp. 107-121, May 1985.

10. Luqi, Berzins V., and Yeh, R.T., "A Prototyping Language for
Real-Time Software," IEEE Transactions on Software
Engineering, v. 14, No. 10, October 1988.

11. Reps, T.W., Generating Language-Based Environments, Ph.D.
Thesis, Cornell University, Ithaca, New York, August 1982.

12. Luqi and Ketabchi, M. "A Computer-Aided Prototyping System,"
IEEE Software, pp. 66-72, March 1988.

13. Galik, D., A Conceptual Design of a Software Base Management
System for the Computer Aided Prototyping System, Master's
Thesis, Naval Postgraduate School, Monterey, California,
December 1988.

130



14. Thorstenson, R., A Graphical Editor for the Computer Aided
Prototyping System (CAPS), Master's Thesis, Naval
Postgraduate School, Monterey, California, December 1988.

15. Raum, H., The Design and Implementation of an Expert User
Interface for the Computer Aided Prototyping System,
Master's Thesis, Naval Postgraduate School, Monterey,
California, December 1988.

16. Marlowe, L., A Scheduler for Critical Timing Constraints,
Master's Thesis, Naval Postgraduate School, Monterey,
California, December 1988.

17. Altizer, C., Implementation of a language Translator for a
Computer Aided Rapid Prototyping System, Master's Thesis,
Naval Postgraduate School, Monterey, California, December
1988.

18. Wood, M., Run-Time Support for Rapid Prototyping, Master's
Thesis, Naval Postgraduate School, Monterey, California,
December 1988.

131



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 0142 2
Naval Postgraduate School
Monterey, California 93943-5002

3. Office of Naval Research 1
Office of the Chief of Naval Research
Attn. CDR Michael Gehl, Code 1224
800 N. Quincy Street
Arlington, Virginia 22217-5000

4. Space and Naval Warfare Systems Command 1
Attn. Dr. Knudsen, Code PD 50
Washington, D.C. 20363-5100

5. Ada Joint Program Office 1
OUSDRE(R&AT)
Pentagon
Washington, D.C. 20301

6. Naval Sea Systems Command 1
Attn. CAPT Joel Crandall
National Center #2, Suite 7N06
Washington, D.C. 22202

7. Office of the Secretary of Defense
Attn. CDR Barber
STARS Program Office
Washington, D.C. 20301

8. 9@ffice of the Secretary of Defense
Attn. Mr. Joel Trimble
STARS Program Office
Washington, D.C. 20301

9. Commanding Officer
Naval Research Laboratory
Code 5150
Attn. Dr. Elizabeth Wald
Washington, D.C. 20375-5000

132



10. Navy Ocean System Center
Attn. Linwood Sutton, Code 423
San Diego, California 92152-5000

11. National Science Foundation
Attn. Dr. William Wulf
Washington, D.C. 20550

12. National Science Foundation
Division of Computer and Computation Research
Attn. Dr. Peter Freeman
Washington, D.C. 20550

13. National Science Foundation
Director PYI Program
Attn. Dr. C. Tan
Washington, D.C. 20550

14. Office of Naval Research
Computer Science Division, Code 1133
Attn. Dr. Van Tilborg
800 N. Quincy street
Arlington, Virginia 22217-5000

15. Office of Naval Research
Applied Mathematics and Computer Science, Code 1211
Attn. Mr. J. Smith
800 N. Quincy street
Arlington, Virginia 22217-5000

16. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Jacob Schwartz
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

17. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. Dr. Squires
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

18. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn. MAJ Mark Pullen, USAF
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

19. Defense Advanced Research Projects Agency (DARPA)
Director, Naval Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

133



20. Defense Advanced Research Projects Agency (DARPA)
Director, Strategic Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

21. Defense Advanced Research Projects Agency (DARPA)
Director, Prototype Projects Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

22. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, Virginia 22209-2308

23. COL C. Cox, USAF
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

24. LTCOL Kirk Lewis, USA
JCS (J-8)
Nuclear Force Analysis Division
Pentagon
Washington, D.C. 20318-8000

25. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
Attn. Mr. Samuel A. DiNitto, Jr.
Griffis Air Force Base, New York 13441-5 700

26. U.S. Air Force Systems Command
Rome Air Development Center
RADC/COE
Attn. Mr. William E. Rzepka
Griffis Air Force Base, New York 13441-5700

27. Professor Luqi
Code 52LQ
Naval Postgraduate School
Computer Science Department
Monterey, California 93943-5100

28. LT Scott W. Porter, USN
Puget Sound Naval Shipyard (PSNS)
Bremerton, Washington 98314-5000

134


